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ABSTRACT

Search for the Higgs Boson Decaying to Two Tau Leptons

in Proton-Antiproton Collisions

at a Center of Mass Energy of 1.96 TeV. (December 2011)

Andrey Lvovich Elagin, B.S.; M.S., Moscow Institute of Physics and Technology

Chair of Advisory Committee: Alexei Safonov

A search for the Higgs boson decaying to ττ using 7.8 fb−1 of pp̄ collisions at

1.96 TeV collected with CDF II detector is presented. The search is sensitive to four

production mechanisms of the Higgs boson: ggH, WH, ZH and VBF. Modes where

one tau decay leptonically, and another decay, hadronically, are considered. Two

novel techniques are developed and used in the search. A Probabilistic Particle Flow

Algorithm is used for energy measurements of the hadronic tau candidates. The signal

is discriminated from backgrounds by the Missing Mass Calculator, which allows for

full invariant mass reconstruction of ττ pair. The data are found to be consistent with

the background only hypothesis. Therefore a 95% confidence level upper limit on the

Standard Model Higgs boson cross section was set. At MH=120 GeV/c2 observed

limit is 14.9×σSM × Br(H → ττ).
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CHAPTER I

INTRODUCTION

The current knowledge about the fundamental building blocks of matter and their

interactions is encompassed in the framework of the so-called Standard Model (SM)

of Particle Physics. The SM contains two different types of elementary particles,

fermions, which constitute the matter, and bosons, the carriers of the fundamental

forces between fermions and themselves. There are four known forces or types of

interactions in nature: strong, electromagnetic, weak and gravity. Owing to its rela-

tively low strength, the gravitational force does not produce effects observable in the

experiments with elementary particles at the energies achievable today and is not part

of the SM. The heart of the Standard Model is the electroweak symmetry breaking

(EWSB) responsible for providing masses to the gauge bosons without violating the

local gauge invariance. The EWSB implies existence of at least one neutral scalar

particle, the Higgs boson. Despite a tremendous amount of high precision experimen-

tal evidence supporting the validity of the Standard Model, the Higgs boson remains

the only undiscovered particle predicted by the Standard Model. Discovery of the

Higgs boson or an affirmative proof that it does not exist in nature is therefore a key

priority for the experimental high energy physics. Incidentally, nearly every other

theory predicting “‘new physics” beyond the SM also requires a Higgs boson or its

equivalents, further motivating the search for the Higgs boson.

Experimental searches for the Higgs boson are a key part of the research pro-

grams of all major collider experiments in the High Energy Physics (HEP). Because

of a small signal production cross section of the Higgs boson and presence of very

This dissertation follows the style of Physical Review D.
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large backgrounds, no single measurement today is capable to discover or exclude

the existense of the Higgs boson on its own. Therefore, searches for the Higgs fo-

cus on combining statistical strength of many individual analyses relying on specific

channels of the Higgs production and decay. While each such analysis has moderate

sensitivity to Higgs boson production, statistical combination of the results obtained

for different channels, experiments and even different colliders significantly increases

the overall sensitivity of such global search for the Higgs boson.

The focal point of the work described here is the search for the Higgs boson

in the channel where Higgs decays to a pair of tau leptons. While this channel

has been known to have the potential for making a strong contribution to the over-

all sensitivity for Standard Model Higgs boson, the actual achievable sensitivity of

experimental analyses in this channel has been significantly reduced by several experi-

mental challenges. Apart from very large background overhelming the potential signal

and challenge of maintaining highly efficient data selection for the final states with

hadronically decaying tau leptons, one key challenge arises from the difficulty in recon-

structing the invariant mass of the Higgs boson to separate Higgs decay events from

very similar decays of Z bosons to pairs of taus. This difficulty has two underlying

causes, one is the poor momentum measurement of visible momenta of hadronically

decaying taus in the environment with frequent energy overlaps. The other one stems

from the lack of an efficient reconstruction technique for reconstructing the invariant

mass in the presence of large cancelation of invisible momenta of neutrinos from the

decays of the two tau leptons in the event. Addressing these serious challenges is

therefore a pre-requisite for exploring the full potential of the H → ττ channel.

This dissertation outlines two novel techniques developed to improve the sensi-

tivity of the search for the Higgs boson in di-tau channel, the Probabilistic Particle

Flow Algorithm (PPFA) and the Missing Mass Calculator (MMC). These techniques
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are then deployed in the analysis searching for Higgs at the CDF experiment at Fer-

milab using proton-antiproton collisions from the Tevatron collider described in the

second part of the manuscript.



4

CHAPTER II

THE STANDARD MODEL AND THE HIGGS BOSON

The Standard Model describes strong, electromagnetic and weak interactions using

the principles of relativistic quantum field theory. In the 1960s Glashow [1], Wein-

berg [2] and Salam [3] developed unified electroweak theory describing electromagnetic

and weak interactions in a single framework. The Lagrangian of electroweak theory is

invariant under the combined gauge transformation SU(2)L ×U(1)Y and it describes

massless gauge bosons and massless fermions.

The SM uses the Higgs mechanism [4] to allow the gauge bosons acquire expere-

mentally observed masses while preserving local gauge invariance via spontaneous

electroweak symmetry breaking (EWSB). It is achieved by introducing a scalar field

potential so that the ground states do not share the symmetry of the Lagrangian

while the local gauge invariance is preserved.

A. The Standard Model

Here we give a brief overview of the Standard Model and introduce the Higgs mech-

anism.

1. Particles and Forces

There are 12 fermions, particles of spin 1/2 (in units of ~, the Planck constant), that

are considered in the SM to be truly elementary particles with no internal structure.

Fermions are grouped in three generation. Each generation consist of two quarks

(electric charge +2/3 and -1/3) and two leptons (electric charge -1 and 0). Each

fermion has a corresponding antiparticle. The defining property of the quarks is the

color charge enabling strong interaction between quarks. Because of non-vanishing
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electric charge and weak isospin quarks can also interact with other fermions via

electroweak interaction. Leptons do not cary color charge and can only participate

in electroweak interactions. Electrically neutral leptons are called neutrinos and can

only interact via weak force.

Interactions between fermions are mediated by gauge bosons, spin 1 particles.

Eight massless gluons mediate strong interactions between colored quarks. Gluons

carry color charge and can self interact. Photons mediate the electromagnetic force

between particles with non-zero electric charge and also are massless. W+, W− and

Z gauge bosons are responsible for weak interactions between fermions. W± and Z

bosons are experimentally known to be massive, requiring a special mechanism to

introduce their masses into the theory while preserving its gauge invariance.

2. Electroweak Interactions and Gauge Invariance

The gauge invariance principle is best illustrated by an example from the Quantum

Electrodynamics (QED). If we introduce a gauge field corresponding to a photon,

Aµ, and a covariant derivative Dµ = ∂µ + ieAµ with e being the coupling strength

(electromagnetic charge), the Lagrangian of the QED, can be written as

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν (2.1)

where ψ is a spinor field of spin 1/2, γµ are Dirac matrices and Fµν = ∂µAν − ∂νAµ.

This Lagrangian is invariant under local gauge transformation

ψ(x) → e−iα(x)ψ(x) (2.2)

Aµ → Aµ +
1

e
∂µα(x) (2.3)

If photons were massive, the mass term would have a form ofm2
γAµA

µ. This term

is not invariant under local gauge transformation and therefore gauge invariance of



6

the LQED would be broken if photons were to be massive. The requirement of photons

being massless inspired by the gauge invariance is experimentally verified with very

high precision.

Electromagnetic and weak force can be described as a single force under the

SU(2)L × U(1)Y gauge group formalism. The SU(2)L group is associated with weak

isospin, T, three gauge fields W 1,2,3
µ with coupling g. The U(1)Y group is associated

with hypercharge, Y, and one gauge field Bµ with coupling g′. The local gauge

transformation now take the form

ΨL → eigα(x)·T+ig′β(x)Y ΨL (2.4)

ΨR → eig′β(x)Y ΨR (2.5)

where ΨL = 1
2
(1−γ5)Ψ and ΨR = 1

2
(1+γ5)Ψ are left- and right handed fields, respec-

tively. The Electroweak Lagrangian, Lew, invariant under these new transformation

is similar to LQED. The covariant derivative is substituted by Dµ = ∂µ + igWµ · T +

ig′ 1
2
BµY and the kinetic term −1

4
FµνF

µν is substituted by −1
4
Wµν ·Wµν − 1

4
Bµν ·Bµν ,

where Bµν = ∂µBν − ∂νBµ and Wµν = ∂µWν − ∂νWµ − g ·Wµ ×Wν .

Massless gauge fields of the electroweak theory are related to the experimentally

observable massive W± and Z bosons and massless photon via a superposition of

W 1,2,3
µ and Bµ fields:

Aµ = cosθWBµ + sinθWW
3
µ (2.6)

Zµ = −sinθWBµ + cosθWW
3
µ (2.7)

W±
µ =

1√
2
(W 1

µ ±W 2
µ), (2.8)

where θW is the Weinberg mixing angle defined as cosθW = g√
g2+g′2

. However, so
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far W and B remain massless in the theory leaving the theory inconsistent with the

experimental observations.

3. Higgs Mechanism

The three bosons mediating electroweak force W+, W− and Z are massive, while

the Lagrangian describing electroweak interactions is not allowed to have a mass

term. If the mass term were added explicitly to the Lagrangian, the gauge invariance

would not be preserved. Higgs mechanism was formulated in 1964 to include massive

particles into the model in a gauge invariant fashion. In this approach, an additional

term LH = |DµΦ|2 − V (Φ†Φ), where V = µ2Φ†Φ + λ(Φ†Φ)2 is added to the gauge

invariant electroweak Lagrangian. The vacuum expectation value is required to be

non-zero by a specific choice of parameters µ and λ: |Φ0| =
√

−µ2

λ
. When the

Lagrangian LH is expressed using Φ′ = Φ0 + h(x), where Φ0 is the ground state,

the Lagrangian acquires a term -2µ2h2, corresponding to a massive scalar Higgs field

h with mass mH =
√

−2µ2. This mechanism where the ground state do not share

the symmetry of the Lagrangian is called spontaneous symmetry breaking. When

spontaneous symmetry breaking is introduced the Lagrangian of the theory remains

invariant under the local gauge transformations while allowing the three gauge bosons

to acquire mass.

B. Searches for the Higgs Boson

Because of the higher order corrections, indirect constraints on the Higgs mass can

be obtained from the global fit of available data for the electroweak parameters sen-

sitive to the mass of the Higgs boson, mH . Examples of such parameters include the

W boson mass, logarithmically dependent on mH and the mass of the top quark,
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quadratically dependent on mH (see Fig. 1). The result of the global fit of 18 elec-

troweak parameters projected on mH [5] is shown in Fig. 1. This fit results in mH =

89+35
−26 GeV/c2 at the 68% confidence level (CL)1.

LEP experiments have performed direct search for the Higgs boson in e+e−

collisions at the center-of-mass energy,
√
s, ranging from 189 GeV to 209 GeV.

The experiments observed no statistically significant evidence for the production

of the Higgs boson and their combined lower limit on the Higgs mass is mH >

114.4 GeV/c2 at the 95% CL. There are a number of ongoing searches for the

Higgs boson in pp̄ collisions at
√
s = 1.96 TeV at the Tevatron by CDF and D0

collaborations and in pp collisions at
√
s = 7 TeV at the LHC by ATLAS and

CMS collaborations. As of July 2011 the Tevatron has excluded the Higgs in the

mass range 156<mH<177 GeV/c2 at 95% CL [6]. ATLAS excluded mass ranges

155<mH<210 GeV/c2 and 290<mH<400 GeV/c2 at 95% CL [7]. CMS excluded

149<mH<206 GeV/c2 and 300<mH<440 GeV/c2 at 95% CL [8]. The sensitivity of

the direct searches by Tevatron and LHC experiments is shown in Fig. 2.

While the LHC has taken the lead over the Tevatron in the search for the Higgs

boson, the Tevatron data remain particularly valuable in the low mass region. As

the low mass region is preferred by indirect measurements, a strong multi-experiment

effort is aimed at improving the sensitivity to the Higgs boson in the mass region just

above LEP exclusion.

1This fit does not include Summer 2011 Tevatron and LHC results.
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Fig. 1. Left: The comparison of the indirect constraints on mW and mt based on

LEP-I/SLD data (dashed contour) and the direct measurements from the LEP-

-II/Tevatron experiments (solid contour). In both cases the 68% CL contours

are plotted. Also shown is the SM relationship for the masses as a function of

the Higgs mass. Right: The observed value of ∆χ2 = χ2 − χ2
min derived from

the fit of electroweak data as a function of the Higgs boson mass. The dark

blue line the result of the fit using all high-Q2 data; the light blue band is an

estimate of the theoretical uncertainties. The dashed line is the result using

alternative evaluation for the contribution of light quarks to the photon vac-

uum polarization, ∆α
(5)
had, as explained in Ref. [9] and references therein. The

dotted curve corresponds to a fit including also the low-Q2. The yellow shaded

region shows mass region excluded at 95% CL by direct searches at LEP and

the Tevatron (Summer 2011 results from the Tevatron and the LHC are not

yet included).
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C. Higgs Production at the Tevatron

As shown in Fig. 3, gluon fusion is the dominant production mechanism of the Higgs

boson at the Tevatron. In the low mass region (115-150) the dominant decay modes

for the Higgs boson are: bb̄ (≈90%), ττ (≈7%) and γγ (≈0.2%). Figure 3 shows the

branching ratios for the Higgs decay as a function of its mass. It is important to note

that in the low mass region no single channel has sensitivity to the Standard Model

Higgs boson at the Tevatron. Only a combination of all production mechanisms and

decay modes may provide enough experimental power to make conclusion about the

existence of the Higgs boson. While the bb̄ channel dominates in terms of the number

of expected signal events, it has the highest background due to the high rate of the

QCD jet production. Experimentally, the bb̄ channel can only be efficiently utilized

for the search for the Higgs boson, when Higgs is produced in association with W or

Z bosons [10], [11], [12]. The channel where the Higgs boson decays to γγ has been

recently investigated by the CDF and D0 collaborations [13], [14]. H → ττ channel

has many handles to suppress QCD background and has been already explored at

CDF and D0 with smaller datasets [15], [16].
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CHAPTER III

THE TEVATRON COLLIDER AND THE CDF DETECTOR

A. The Fermilab Accelerator Complex and The Tevatron

The Fermilab accelerator complex [17] is designed to produce protons and antiprotons

beams and accelerate them for collisions at the center-of-mass energy
√
s=1.96 TeV.

Figure 4 shows a schematic view of the complex. It consists of several major facilities

each having its own dedicated task: production of the protons and antiprotons, their

acceleration to the collision energy and maintaining achieved energy of the proton

and antiproton beams.

Fig. 4. The Tevatron accelerator chain.
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1. The Proton Accelerator Chain

The Pre-accelerator, or Preacc, is the first accelerator in the Fermilab accelerator

chain. It produce negatively charged hydrogen ions, H−, and accelerate them to

the energy of 750 keV. The Preacc repetition rate is 15 Hz. After beam exits the

accelerating column, it travels through a transfer line to the Linac, the next level of

acceleration for the negatively charged hydrogen ions. It takes the ions with an energy

of 750 KeV and accelerates them to an energy of 400 MeV. The acceleration in the

linac is achieved by the use of Radio Frequency (RF) cavities. RF cavities produce a

standing wave which timing is such that particles traveling through a series of cavities

receive additional energy in each cavity.

Booster is the next level of acceleration. It takes the 400 MeV negative hydrogen

ions from the Linac. The electrons are removed from the ions leaving only protons

which are accelerated to 8 GeV. The Booster is the first circular accelerator, or

synchrotron, in the chain of accelerators. It consists of RF cavities for the acceleration

and a series of magnets to keep particles in the ring of the 75 m radius. The repetition

rate of the Booster is 15 Hz.

2. The Antiproton Source and Recycler

The antiprotons are created by 120 GeV proton beam from the main injector hitting

the nickel alloy target. Magnets are used to extract antiprotons with momentum of

8 GeV out of other secondary particles produced on the target. The antiprotons are

captured by into the Debuncher - triangular-shaped synchrotron with a mean radius

of 90 meters. Efficient capture of the high momentum spread of the antiprotons is

accomplished by RF manipulation called bunch rotation. Antiprotons are coolled in

the Debuncher by stochastic cooling technique. After the Debuncher the antiproton
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beam is transfered into the Accumulator. It is also triangular-shaped synchrotron

with mean radius of 75 meters and is located in the same tunnel as the Debuncher.

The Accumulator serves as the storage ring of 8 GeV antiprotnos before they get

transfered into the Recycler. The Accumulator has also a number of cooling systems.

The Recycler is an antiproton storage ring in the Main Injector tunnel. It accepts

antiprotons from the Accumulator and cools them further than the Accumulator is

capable. Apart from stochastic cooling used in the Recycler, electron cooling system

is required for high intensity antiproton beam when stochastic cooling looses effec-

tiveness. The particles in the Recycler are kept at a constant energy of 8 GeV until

the Tevatron is ready to accept them, when they are passed to the Main Inhector.

3. The Main Injector and The Tevatron

The Main Injector accepts 8 GeV protons from the booster and 8 GeV antiprotons

from the Recycler. The protons and antiprotons are accelerated to the energy of

150 GeV before they are injected to the Tevatron. The protons can be also accelerated

to 120 GeV in the Main Injector and be used for antiproton production.

The Tevatron is a 4 miles circular synchrotron with eight accelerating cavities.

The Tevatron can accept both protons and antiprotons from Main Injector and ac-

celerate them from 150 GeV to 980 GeV in 85 s. In Collider mode, the Tevatron can

store beam for hours at a time. For the high energy collisions the Tevatron is filled

with 36 bunches of ∼3×1011 protons and ∼7×1010 antiprotons. The bunches are

groupped in three bunch trains of 12 bunches. The separation between bunch trains

is 2.64 µs. Separation between bunches within a bunch train is 396 ns. Proton and

anti-proton beams are orbiting in a helix trajectory in the same beam-pipe. Electro-

static separators produce a strong electric field to keep the two beams appart. One

turn in the Tevatron takes 21 µs. The Tevatron employs superconducting magnets
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cooled with liquid hellium at 4.2 K. The magnets produce dipole field of 4.4 T.

B. The CDF II Detector

The CDF II detector [18] [19] is a general purpose detector for precision measurment

of the momentum, energy and position of the particles produced in proton-antiproton

collisions at the Tevatron. CDF II refers to a significantly upgraded version of the

original CDF detector [20]. The CDF II detector1 has been designed and constructed

to perform a broad physics program [21] including detailed studies of the QCD pro-

cesses, Heavy Flavour sector, measurement of the properties of top quark, Z and W

bosons, searches for the Higgs boson and searches for the physics beyond the Standard

Model.

Figure 5 shows the detector’s cylindrical layout with accelerator beamline being

the central axis of the cylinder. There are three major components of the detec-

tor. Tracking system is designed for precise reconstruction of the charged particles

trajectories, and is the inermost part of the CDF detector embeded in 1.4 T uni-

form magnetic field produced by a superconducting solenoid. Calorimeter modules

are located outside the solenoid arranged in a projective tower geometry and provide

energy measurements for neutral and charged particles. The muon system, built as

a series of drift chambers, constitute the outermost part of the detector. It is used

to detect muons which are minimum-ionizing particles that usually pass throught the

calorimeter.

1In the following referred to as simply ”CDF”.
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Fig. 5. The CDF detector: an isometric (left) and elevation (right) views.

1. Coordinate System

The z-axis of the CDF coordinate system is defined as the direction of the incoming

protons and coinsides with the direction of the magnetic field. A particle direction

at the origin is described by θ, the polar angle relative to the incoming proton beam;

φ, the azimuthal angle about this beam axis; and z0, the intersection point of the

particle trajectory with the beam axis. Instead of θ, an alternative variable called

pseudorapidity, η = −ln(tanθ
2
), is frequently used. This is because energies of the

partons within proton and antiprotons are not equal to the beam energy of 980 GeV.

Therefore the particle occupancy per unit polar angle, dN/dθ depends on the boost

in z direction, since θ is not Lorentz invariant. Pseudorapidity is the ultrarelativistic

approximation of the Lorentz invariant rapidity,

y =
1

2
ln

1 + βcosθ

1 − βcosθ
=

1

2
ln
E + pz

E − pz

. (3.1)

For the high energy particles p ≈ E or β ≈ 1 and therefore y ≈ η. Now the

number of particles per unit of pseudorapidity, dN/dη, is invariant under Lorentz
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transformation.

It is convenient to describe distance between the objects (particles or group of

particles) in the detector in η − φ space by using ∆R variable defined as ∆R =
√

∆η2 + ∆φ2.

The transverse momentum, pT , is a component of the momentum projected on

a plane which is normal to the beam axis, pT = p · sinθ. Similarly, the transverse

energy, ET , is given by E · sinθ.

2. Cherenkov Luminosity Counters

The total integrated luminosity,
∫

Ldt, is calculated from the rate of the inelastic pp̄

collisions measured with Cherenkov Luminosity Counters (CLC) using the expression

∫

Ldt =
µ× f

σin
(3.2)

where µ is the average number of inelastic pp̄ collisions per bunch crossing, f is the

Tevatron bunch crossing frequency (1.515×107 MHz), and σin is total inelastic pp̄

cross section at 1.96 TeV (σin=60.7±2.4 mb).

The CLC consist of two modules installed around the beampipe at each end of

the detector and provides coverage in the region 3.6<|η|<4.6. Each module consists

of 48 counters filled with isobutane gas at 22 psi. The counters arranged in three

concentric layers of 16 counters around beam-pipe. The counters in the inner layer

are 1.1 m long and the counters in the two outer layers are 1.8 m long. Each counter

is made of reflective aluminized Mylar with light reflector to collect the Cherenkov

light into photomultiplier tubes with high quatnum efficiency in the ultraviolet wave

lenght range. The half-angle of the Cherenkov light cone is 3.1 which correspond to

a momentum threshold for light emmision of 9.3 MeV/c for electrons and 2.6 GeV/c

for pions. The overall uncertainty on the luminosity measurements is 5.9% which is
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dominated by the uncertainty in the absolute normalization of th CLC acceptance

for a single pp̄ inelastic colision.

3. Tracking System

The silicon strip vertex detector is the inermost tracking detector located immediately

around the beam pipe and serves for high precision tracking and secondary vertex

detection. It consists of three modules: Layer 00 (L00), Silicon Vertex Detector

(SVX II) and Intermediate Silicon Layer (ISL). L00 is a single-sided silicon microstrip

detector arranged in wedges at radius of 1.35 cm and 1.62 cm from the center of

the beam pipe and covering η<4.0. The SVX II is doubled-sided silicon microstrip

detector extending in radial direction from 2.1 cm to 17.3 cm covering η<2.0. The

ISL is also double-sided silicon microstrip. The central layers of the ISL are located

at a raduis of 22 cm and cover η<1.0. Forward and backward layers are located at

r=20 cm and r=28 cm and cover 1.0<η<2.0.

The Central Outer Tracker (COT) is located directly outside of the silicon track-

ing detectors in the radial directions. The COT chamber has over 300,000 redout

channels and cover the region |η| < 1. The chamber consist of 8 superlayers of

310 cm length cells at radii between 40 and 132 cm from the beam axis. Each super-

layer consist of 12 layers of sense wires located between alternating layers of potential

wires. Four out of eight superlayers are parallel to the beam axis (axial layers) and

the other four superlayers are are strung at an angle of ±2 degree with respect to the

beam axis. This allows to perform particle tracking in z−direction.

The COT is filled with argon and ethane mixes equally. This mixture ensures a

fast drift velocity of ≈50 µm/ns, which is necessitated by the short intervals between

beam bunch crossings. The maximum drift distance in the chamber is 0.88 cm which

correspond to a drift time of the order of 200 ns.
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The charge and momentum of a particle associated with a track are determined

by the track curvature in the magnetic field of 1.4 T. The uniformity of the field in

the tracking region |z| <150 cm and r <150 cm is 0.1%. The transverse momentum

of a reconstructed track is determined as pT = 0.3 · q ·B · ρ, where B is the magnetic

field measured in T, q is the electric charge of the particle measured in the magnitude

of the electron charge and ρ is the radius of the curvature of the track. The resolution

decreases with pT as track bend less and the precision of the curvature measurement

degrades. The resolution of the COT is δpT/p
2
T ≈0.0015 (GeV/c)−1.

4. Time of Flight System

Although data analysis presented in this dissertation does not use Time of Flight

System (TOF) of the CDF detector, we summarize its design and performance for

completeness. TOF was added in 2001 to improve particle identification. It was

designed with the goal to distinguish low momentum kaons, pions and protons. It

is achieved by measuring particle travel time from the interaction point to the TOF.

The system consist of 216 scintillator bars 3 m length with cross section area of

4×4 cm2. The bars are arranged around the COT at radius of 1.5 m. TOF system

timing resolution is about 110 ps, which provides two standard deviation separation

between kaons and pions for momentum below 1.6 GeV/c.

5. Calorimeter System

Calorimeter modules provide the energy measurement for both charged and neutral

particles. These modules are sampling scintillator calorimeters arranged in towers

around the outer edges of the central tracking volume. There are two calorimeter sec-

tions in the detector: a central barrel (|η|<1) section and plug section (1.1<η<3.64).

Scintilator layers are parallel to the beam in the central calorimeter and perpendicu-
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lar to the beam in the plug. The size of the projective readout towers of the central

barrel is 0.1 in η and 15 degrees in φ. The size of the plug tower varies from 0.1 in η

and 7.5 in φ at η=1.1 to 0.5 in η and 15 in φ at η=3.64. Each calorimeter module has

electromagnetic and hadronic part. Central part of the calorimeter is extensively used

in this dissertation. Central electromagnetic (CEM) and hadronic (CHA) calorime-

ters cover the pseudorapidity region of |η| < 1. CEM is a lead-scintillator calorimeter

with resolution δET/ET = 0.135/
√
ET ⊕0.02. CHA is an iron-scintillator calorimeter

with the single pion energy resolution of 0.5/
√
ET ⊕ 0.03. The Shower Maximum

(CES) detector, consisting of a set of strip-wire chambers embedded inside the CEM

at the expected maximum of the electromagnetic shower profile, enables measurement

of the position of electromagnetic showers with a few mm accuracy by reconstruct-

ing clusters formed by strip and wires. While rarely used to measure energy of the

electromagnetic showers, CES cluster’s pulse height provides a measurement of elec-

tromagnetic shower energy with the resolution of δE/E = 0.23.

6. Muon System

Muons typically pass through the calorimeter modules without singificant losses in

energy. There are two main parts of the muon system. The central part (|η|<0.6)

consist of the Central Muon Detector (CMU) and the Central Muon Upgrade (CMP).

Central Muon Extension Detector (CMX) provides coverage to a region with η<1.

The CMU consist of single-wire drift chambers located directly around the outer

edge of the central calorimeter module and arranged in four concentric radial layers.

The wires are strung parallel to the beam line. Wire pairs in layers 1 and 3 and

layers 2 and 4 project radially back to the beam interaction point which allows for a

coarse pT measurement using the difference in signal arrival times on the two wires

within a pair. Precision position measurement in φ direction is made by converting
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signal arrival times into drif distances in the transverse plane. The wires of cells in

neighbouring stacks are connected via resistive wires at the non-redout end cells to

provide for a coarse measurement of the hit positions along z−direction. In Run II

these chambers operate in proportional mode 2. The maximum drift time within a

CMU cell is 800 ns which is longer than the 396 ns spacing between bunch crossings

in the accelerator. The ambiguity as to which beam crossing a particular CMU hit

originates from is resolved in both the trigger and the offline reconstruction using

timing information associated with a matched COT track and/or matching energy in

the calorimeter.

CMP and CMX are wire drift chambers run in proportional mode. They are

identical except for their lengths along the direction of the wire which is larger for

CMP chambers. These drift cells are roughly a factor of two wider than those in the

CMU detector resulting in a longer maximum drift time of 1.8 µs. Occupancies in

these chambers are small enough to uniquely determine the appropriate beam-crossing

from COT track matching. The CMP chambers are arranged in a box-like structure

around the outside of the CMU detector and an additional 3λ of steel absorber which is

sandwiched between the two detectors. The additional steel greatly reduces hadronic

punchthrough into the CMP chambers and allows for cleaner muon identification.

Drift cells in the CMX detector are arranged in conical arrays of eight staggered

layers. The partial overlap between drift tubes in the CMX conical arrangement

allows for a rough hit position measurement in the z coordinate utilizing the different

stereo angles of each cell with respect to the beam axis.

2CMU chambers were operated in streamer mode during Run I.
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CHAPTER IV

HADRONIC TAU RECONSTRUCTION AND THE PROBABILISTIC PARTICLE

FLOW ALGORITHM

A. Introduction to the Particle Flow Algorithm

Accurate measurement of energy of hadronic jets is critical both for precision verifi-

cation of the Standard Model (SM) as well as searches for new physics at current and

future collider experiments. A standard technique for measuring jet energy relies on

clustering spatially close energy depositions in the calorimeter, the detector designed

to measure the energy of particles that produce electromagnetic or hadronic showers

in the absorber material. Given that on average about 70% of a typical jet energy is

carried by particles interacting hadronically1 (mostly π±, but also K±, K0
L, protons,

neutrons), accuracy of the jet energy measurement is driven by the calorimeter pre-

cision in measuring energy of hadronic showers. While the energy of electromagnetic

showers can be measured very well, large fluctuations in the development of hadronic

showers lead to a significantly lower precision2. The non-equal response of the non-

compensating calorimeters to electromagnetic and hadronic showers3, further biases

the overall jet energy scale and reduces resolution requiring special corrections, which

can only partially recover this reduction. While presence of many particles in a jet

averages out fluctuations in the measurement of energy of individual hadronic show-

1the remaining 30% is mainly due to neutral pions decaying to pairs of photons,
which produce electromagnetic showers.

2A typical example is the CDF calorimeter, which has good electromagnetic
calorimeter resolution δE/E ∼ 0.135/

√
E while the response to stable hadrons, e.g.

charged pions, is substantially less precise δE/E ∼ 0.5/
√
E.

3E.g., main calorimeter systems at ATLAS, CDF, and CMS are all non-
compensating.
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ers, jet energy resolution remains poor for jets of low (∼10–30 GeV) and moderate

(∼30–60 GeV) energies. Incidentally, resolution of low-to-moderate energy jets has

a strong impact on sensitivity of many physics analyses, from electroweak precision

measurements to searches for Supersymmetry or Higgs in bb̄ and ττ channels, moti-

vating development of improved jet energy measurement techniques. Furthermore, as

mismeasurements in the energy of jets in an event bias the missing transverse energy,

better jet energy resolution improves missing transverse energy measurement, a key

discriminant in many searches for new physics.

A significant improvement in the jet energy resolution at hadron collider exper-

iments has been achieved with the deployment of a technique known as the Particle

Flow Algorithm (PFA). PFA achieves better jet energy resolution by reconstructing

and measuring energy of individual particles in a jet using information from several

detector sub-systems. For example, momentum of a charged hadron can be precisely

measured using tracking (except for the case of very high transverse momenta, which

is not relevant for this discussion) allowing one to replace with it the less accurate

calorimeter measurement of the energy carried by charged hadrons in the PFA jet

energy calculation:

Ejet =
∑

tracks

Etrk +
∑

γ′s

Eγ +
∑

n

En, (4.1)

where the first term is the energy of the charged particles in the jet, the second term

accounts for energy of photons accurately measured in the electromagnetic calorime-

ter, and En is the energy of stable neutral hadrons, e.g. neutrons or K0
L, which still

relies on the hadron calorimeter. The corresponding relative jet energy resolution can

be written in terms of single particle relative resolutions as:

σ2(Ejet)

E2
jet

=
1

E2
jet

×
(

∑

tracks

E2
trk

σ2(Etrk)

E2
trk

+
∑

γ′s

E2
γ

σ2(Eγ)

E2
γ

+
∑

n′s

E2
n

σ2(En)

E2
n

)

(4.2)
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Note that only the last term depends on the potentially poor calorimeter resolution

for energy of hadronic showers. However, because the average fraction of the jet

energy carried by stable neutral hadrons is on average only around 10%, it’s con-

tribution to the overall jet energy uncertainty is strongly suppressed by
∑

En/Ejet.

With the remaining 90% of energy accurately measured either in the tracker or in the

electromagnetic calorimeter, achievable jet energy accuracy can substantially outper-

form the traditional calorimeter-only based measurements. Furthermore, the bias in

the energy scale related to calorimeter non-compensation is significantly reduced as

it is only present in the suppressed third term and can be easily corrected.

Apart from an obvious pre-requisite of highly efficient tracking, the performance

of a PFA-based reconstruction in a realistic setting depends critically on one’s ability

to correctly identify and separate calorimeter energy depositions from spatially close

particles. One example illustrating the issue is an overlap of energy deposits in the

calorimeter due to a charged pion and a neutron. In this case one has to “guess”

the fraction of the measured calorimeter energy deposited by the charged pion, so

that the excess can be attributed to a neutral hadron. The dependence of jet energy

resolution on the overlap effects is sometimes parameterized by amending Eq. (4.2)

with the so called “confusion term” σ2
conf . The size of the confusion term depends on

the power of the algorithm and the detector design features, but it generally increases

with the coarser calorimeter segmentation and higher particle densities. In extreme

cases, the large size of the confusion term can completely eliminate the advantages of

the PFA schema over traditional calorimeter-based measurement.

PFA-based algorithms have been successfully implemented at LEP in the 1990’s [22]

and have been pursued in developing physics program at the International Linear Col-

lider (ILC) [23]. At hadron collider experiments, a simplified version of a PFA-based

algorithm was implemented for reconstructing hadronically decaying tau leptons at
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CDF at the end of Run I [24] providing strong improvement in hadronic tau jet energy

resolution. It was further improved and used at CDF for Run II analyses [15]. A

more comprehensive implementation of the same technique has been shown to improve

generic jet resolution at CDF compared to calorimeter-only reconstruction. However,

the confusion term associated with frequent energy overlaps owing to the coarse seg-

mentation of the CDF calorimeter towers has allowed only a limited improvement. A

complete PFA algorithm has been developed by the CMS experiment [25] allowing a

strong improvement in jet energy and missing transverse energy scale and resolution.

The CMS detector is nearly ideally suited for PFA-based reconstruction due to its

fine granularity of the electromagnetic calorimeter and the longitudinal profiling of

hadronic showers, which improves their spatial resolution. However, the expected

“High Luminosity LHC” upgrades causing large increases in particle occupancies per

event will require developing techniques for resolving energy overlaps in order to

maintain the performance of the PFA reconstruction.

In this chapter, we discuss the challenges and implications of deploying a PFA-

based reconstruction in the environment with frequent energy overlaps (Section B). In

Section C we present a technique designed to resolve the overlapping energy deposi-

tions of spatially close particles using a statistically consistent probabilistic procedure.

In addition to improving energy resolution, the technique allows combining measure-

ments from multiple detectors as opposed to “substituting” one measurement with

another in existing algorithms and is nearly free of ad-hoc corrections thus minimizing

distortions due to the discontinuities of the correction functions. It provides addi-

tional handles, such as the measurement of jet energy uncertainty on a jet-by-jet basis

and the measure of the overall consistency of the measurement, improving sensitivity

of physics analyses. In Section D, we describe implementation of this technique for

reconstructing hadronic tau jets at CDF and illustrate its performance with real data
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in Section E.

B. Challenges of the Large Energy Overlap Environment

Reconstruction of hadronically decaying tau jets with the CDF detector is a good

example of a problem with frequent overlaps of energy deposits by nearby particles.

The CDF calorimeter has projective tower geometry with azimuthal segmentation φ =

15◦ and pseudorapidity segmentation η ≈ 0.1 and does not provide measurements of

either lateral or longitudinal profile (except having two separate energy measurements

for deposits in the electromagnetic and hadron compartments of a tower). With a

typical angular size of a hadronic tau jet of the order of 0.05-0.1 rad, there is a

substantial probability for several or even all particles within the tau jet to cross the

face of the calorimeter within the boundaries of a single calorimeter tower. Treatment

of frequent energy overlaps is therefore a key consideration in designing a PFA-based

reconstruction at CDF.

To set the stage, we need to briefly remind charachteristics of the sub-detector

systems used in tau reconstruction and identification, a full description of the CDF

detector is available in Chapter 3. The CDF tracking system provides nearly 100%

efficient tracking within the pseudorapidity range of |η| < 1 relevant to tau recon-

struction. It’s main element is the Central Outer Tracker (COT), a drift chamber

covering radii from 0.4 m to 1.37 m, providing momentum resolution of δpT/p
2
T ≈

0.0015(GeV/c)−1. If available, hits from the silicon vertex detector (SVX) are added

to the COT information further improving the resolution. Central electromagnetic

(CEM) and hadronic (CHA) calorimeters cover the pseudorapidity region of |η| < 1.1.

CEM is a lead-scintillator calorimeter with resolution δET/ET = 0.135/
√
ET ⊕ 0.02.

CHA is an iron-scintillator calorimeter with the single pion energy resolution of
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0.5/
√
ET ⊕ 0.03. Both calorimeters have a projective tower geometry with tower

size ∆φ× ∆η ≈ 15◦ × 0.1 and neither of the calorimeters measures either the longi-

tudinal or lateral shower profile. The Shower Maximum (CES) detector, consisting

of a set of strip-wire chambers embedded inside the CEM at the expected maximum

of the electromagnetic shower profile, enables measurement of the position of elec-

tromagnetic showers with a few mm accuracy by reconstructing clusters formed by

strip and wires. While rarely used to measure energy of the electromagnetic showers,

CES cluster’s pulse height provides a measurement of electromagnetic shower energy

with the resolution of δE/E = 0.23. Because pulse heights of the one-dimensional

strip and wire clusters reconstructed for the same shower are typically within ≈ 7% of

each other4, multiple showers within a single CES chamber can typically be correctly

reconstructed by matching the 1D strip and wire clusters using their pulse heights.

The much broader hadronic showers frequently extend over multiple CHA towers and

their spatial position can only be inferred from the energy measured for each tower.

Early hadronic showers can deposit part of their energy in CEM and may produce

clusters in CES, which sometimes complicates reconstruction of CES clusters, e.g. if

overlapping with showers produced by photons in the same jet.

Let us consider a relatively simple example of reconstructing a jet containing a

charged pion π+, a neutral pion π0 decaying to two unresolved photons γ1γ2 (ap-

pearing as a single electromagnetic cluster), and possibly a neutral hadron n. While

the π+ momentum is known from the tracker, energy estimation for neutral particles

relies on the calorimeter measurement. However, the energy registered in the elec-

tromagnetic and hadronic parts of the calorimeter, EEM
meas and EHAD

meas , is a sum of the

4The CES energy resolution is driven by the fluctuations in the amount of ioniza-
tion produced inside the CES chambers and not by the measurement of the charge
collected on strips and wires.
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unknown deposits by each of the particles in the jet, including that by the charged

pion:

EEM
meas = EEM

π+ + EEM
γ1γ2

+ EEM
n (4.3)

EHAD
meas = EHAD

π+ + (EHAD
γ1γ2

) + EHAD
n , (4.4)

resulting in an under-constrained system with two equations and six unknowns.

Because the leakage of the electromagnetic showers from photons into the hadron

calorimeter is typically small, as illustrated in Fig. 6(a) showing EEM vs. EHAD

for simulated electrons, the corresponding term, shown in parentheses in Eq.(4.4),

could be neglected. While it helps in reducing the number of unknowns, solving the

problem requires disentangling contributions from hadronically interacting particles.

While EEM
π+ and EHAD

π+ terms are correlated with the accurately measured momentum

of π+, the correlation is not trivial as illustrated in Fig. 6(b) showing the 2D distribu-

tion of EEM vs. EHAD for a simulated sample of charged pions with pπ+ = 25 GeV/c.

The complex shape of the dependence owes to the large fluctuations in the develop-

ment of hadronic showers and the non-compensating nature of the CDF calorimeter.

Because EEM
π+ cannot be reliably estimated, and EEM

n is completely unconstrained,

momentum of π0 cannot be calculated directly. Estimating the jet energy directly in

the PFA approach is therefore hampered by two issues: (i) difficulty in estimating

EEM for hadronically interacting particles required to evaluate π0 momentum, and

(ii) difficulty in estimating EHAD
π+ required to estimate momentum of n. Measuring

momentum of a combined π0 +n system, e.g. by “guessing” charged pion depositions

and assigning the rest to the π0 + n system is nearly exactly equivalent to measur-

ing jet energy using the calorimeter only thus negating all advantages of the PFA

technique.
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Fig. 6. Examples of the calorimeter response for (a) simulated isolated electrons with

p = 25 GeV/c and (b) simulated isolated charged pions with p = 25 GeV/c in

the plane EEM versus EHAD.

An algorithm based on solving Eqs.(4.3,4.4) directly with a specific purpose of

reconstructing hadronic tau jets was implemented in the “tracks+π0’s” algorithm at

CDF and used in the early Run-II analyses. The idea was to simplify the problem

by assuming absence of neutral hadrons and estimate EEM
π+ as an average electro-

magnetic deposition of a charged pion with the momentum measured in the tracker.

Then the remaining portion of the measured electromagnetic energy can be taken as

the energy of the π0 (Eq.(4.3)). An alternative method tried was to assume minimal

ionization by the charged pion in the electromagnetic calorimeter. While delivering

a significant improvement over the calorimeter-only measurement for a large fraction

of events, the algorithm featured long tails in the energy resolution due to jets with

substantial overlaps of particles in the same calorimeter tower. In physics analyses,

undermeasuring energy of quark or gluon jets containing neutral hadronically inter-

acting particles also lead to an increase in background contamination. To address

these issues, additional corrections based on detecting incompatibilities of the recon-

structed energy with the initially unused Eq.(4.4) or gross disagreements with the low
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resolution measurement of π0 energy in the Shower Maximum detector have been de-

veloped. These adjustments improved algorithm performance by correcting jets with

the most obvious inconsistencies. However, the ad-hoc nature and complexity of the

corrections as well as the algorithm’s inability to consistently treat correlations and

incorporate other available measurements, e.g. energy measurement in the hadronic

calorimeter and the measurement of electromagnetic shower energy in the Shower

Maximum detector, motivated developing a more comprehensive method.

C. PPFA: The Probabilistic Particle Flow Algorithm

The challenge of solving an underconstrained system with high correlations and addi-

tional redundant measurements outlined in previous section can be addressed with a

probabilistic approach. For every particle content hypothesis (the number of particles

of each type) in a jet, one can build a probability estimator (likelihood) for any given

set of momenta pi of each particle in a jet (i = 1, ..., ip is the particle index) to result

in a particular set of detector measurements (which could represent energy counts in

calorimeter towers, cluster energies, track momenta or any other measurement) Ej
meas

(j = 1, ..., jm runs over all available measurements):

L(~p | ~Emeas) =

∫

∏

j=det

M(E1
1 , ..., E

jm

ip
, E1

meas, ..., E
jm

meas) × Pij(E
j
i |pi)dE

j
i , (4.5)

where Pij(E
j
i |pi) is the “response function” for particle i with true momentum pi to

produce a contribution Ej
i to a measurement j, and the matrix M contains infor-

mation about correlations between contributions of each particle to each measure-

ment. One example of the latter is the correlation between the the deposits of energy

Ei
j in electromagnetic calorimeter tower j by all particles crossing it giving a term

δ(
∑

i

Ej
i −Ej

meas) in M. Another example is the correlation between the energy de-
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posits by particle i in the electromagnetic and hadron calorimeter clusters (or towers)

j1 and j2 it crosses, in which case the corresponding term may have a fairly complex

form f(Ei
j1
, Ei

j2
). If such global likelihood function were constructed, ~p0 correspond-

ing to its maximum will determine the most probable set of particle momenta, thus

achieving the goal of fully reconstructing the event using all available detector infor-

mation. The type of each particle and their number can be taken as parameters of the

global likelihood allowing one to also determine the most probable particle content

of a jet.

While building a global and fully inclusive likelihood is certainly possible, it

is hardly practical. However, this approach can be used to solve specific problems

like measuring jet energy in the environment with frequent energy overlaps in the

calorimeter. Here, we will describe an example of such possible PPFA implementa-

tion. For simplicity, this example will use energy of pre-reconstructed electromagnetic

and hadronic calorimeter clusters as the basic measurements Ej
meas, but an implemen-

tation using tower energy measurements would be very similar. The PPFA probability

for a set of particles with momenta pi to produce a set of calorimeter measurements

Ej
meas for each cluster j in electromagnetic and hadron calorimeter can be written as

follows:

Lp(~p | ~Emeas) =

∫

∏

j=clusters

δ(
∑

i

Ej
i − Ej

meas)MPij(E
j
i |pi)dE

j
i , (4.6)

where ~p is the vector of particle momenta pi, index i runs over the list of particles in

a jet, index j runs over the available measurements (in our example, electromagnetic

and hadronic calorimeters cluster energy measurements), Ej
i is the energy deposited

by ith particle in cluster j, Ej
meas is the measured energy for cluster j, and the re-

sponse function Pij(E
j
i |pi) is the probability for particle i with true momentum pi

to deposit energy Ej
i in cluster j (Pij depends on the type of particle), M is not
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yet defined correlation matrix. The likelihood Lp is essentially a sum of probabilities

of all possible outcomes (specific values of energy deposited by each particle in the

electromagnetic and hadronic calorimeter clusters) consistent with the actual cluster

energy measurements. The probability of each outcome is a product of probabilities

Pij for each particle to deposit given amount of energy Ei in the hadronic and elec-

tromagnetic calorimeters given their assumed true momenta pi. In this example, M

in Eq.(4.6) is needed to account for the correlation of deposits by the same particle

in the electromagnetic and hadronic calorimeters, e.g. early showering of a charged

hadron leads to larger deposition in the electromagnetic calorimeter and reduced en-

ergy deposited in the hadron calorimeter. The easiest way to take that into account

is to switch to two-dimensional response functions PCAL(E
EMj1
i , E

HADj2
i |pi), where j1

and j2 are the indeces of the electromagnetic and hadronic calorimeter clusters the

particle traverses. In this schema, the distributions previously shown in Fig. 6(a) and

(b) can be normalized and used as PCAL(EEM , EHAD|p) for electrons and charged

pions, respectively.

20 40 60 80 100
0

5000

10000

Fig. 7. Examples of the Shower maximum detector response functions for simulated

isolated photons with momenta p = 25 GeV/c. Arbitrary units are chosen.
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Additional measurements can be easily incorporated by modifying the likelihood

function with Bayesian-like “priors”. For example, tracking, preshower, or Shower

Maximum information can be added by multiplying the initial likelihood function by

a probability to measure a certain track momentum or pulse height given the assumed

true momentum of a charged pions, electrons or photons. For example, distribution

shown in Fig. 7 upon normalization can be used as the Shower Maximum response

functions PCES
γ (ECES|pγ) for photons with momenta p = 25 GeV/c.

The most probable set of particle momenta ~p0 is obtained by maximizing the

likelihood Lp(~p | ~Emeas), its shape in the ~p space can be used to evaluate of the

uncertainty in the energy of each particle. If one primarily seeks to measure the

energy of the entire jet, one can use the likelihood to obtain a “posterior” distribution

for the jet energy (defined as a sum of the energies of the constituent particles).

LE(Ejet| ~Emeas) =

∫

Lp(~p | ~Emeas) × δ(
N
∑

i=1

pi −Ejet)d~p, (4.7)

as in the presence of correlations the latter provides a more convenient estimate of

the jet energy and its uncertainty. The shape of the jet energy “posterior” allows

estimating the uncertainty in the measured jet energy. Once the most likely set of

particle momenta ~p0 is found, one can further test the “goodness” of the particle hy-

pothesis. We define a p-value as the probability to observe a combination of detector

measurements ~E ′
meas that is equally or less likely than the actual set ~Emeas observed

in the event, given that the true combination of particles and momenta is the one

that maximizes the likelihood in Eq. (4.6):

p =

∫

Lp(~p0 | ~E′

meas)<Lp(~p0 | ~Emeas)

Lp(~p
0 | ~E ′

meas)d
~E ′

meas

∫

Lp(~p
0 | ~E ′

meas)d
~E ′

meas

(4.8)

In practice, the p-value can be easily calculated by generating “pseudo-experiments,”
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in which one generates “pseudo-deposits” of energy by each particle with momenta

p0
i towards each cluster energy measurement using the same response functions. The

sum of the deposits of all particles crossing particular clusters yields a set of pseudo-

measurements ~E ′
meas. The probability of the generated outcome is given by Lp, and

the integrated probability of observing equally or less probable set of measurements

gives the p-value. Too low p-value will indicate that the initial hypothesis should

be modified. Note that interpreting measured p-values has to be done carefully as

arbitrary addition of new particles to make the observed calorimeter response “per-

fect” may degrade the resolution by biasing the measurement towards the calorimeter

based jet energy measurement .

D. PPFA Implementation for Hadronic Tau Reconstruction at CDF

In this section we describe a practical implementation of the method developed for

hadronic tau jet reconstruction at CDF. In the following, we discuss the CDF baseline

hadronic tau jet reconstruction, which is used as a starting point for the algorithm.

We then discuss the PPFA strategy, measurement of response functions, mathematical

definition of the PPFA likelihood function and the “p-value,” and corrections. We

conclude with evaluating algorithm’s energy resolution using simulation.

1. Baseline Hadronic Tau Jet Reconstruction at CDF

A hadronic tau jet candidate is defined as a narrow cluster of calorimeter energy with

a seed tower of ET > 5 GeV/c and at least one track with pT > 5 GeV/c pointing to

the calorimeter cluster. The narrow cluster is defined as a cluster with no more than

six contiguous calorimeter towers with ET > 1 GeV/c and is required to be in the

central part of the detector (|η| ≤ 1) to ensure high tracking efficiency. Given the size
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of the CDF calorimeter towers of ∆η × ∆φ ∼ 0.1 × 0.2, efficiency of the calorimeter

requirements is very high for hadronically decaying taus with visible pT > 10 GeV/c.

Seed track pT requirement brings a non-negligible inefficiency for tau jets of low-to-

moderate visible momentum, but its strong power in rejecting quark and gluon jet

backgrounds made it a standard in all CDF analyses involving hadronic tau jets.

Next, all nearby (within a signal cone of ∆R =
√

∆φ2 + ∆η2 < 0.17 around the seed

track) are associated with the tau candidate to be used in further analysis.

2. Implementation Strategy

The likelihood-based PFA algorithm starts with the initial hypothesis that every

reconstructed track is a charged pion, every reconstructed cluster in the Shower Max-

imum detector with no track pointing to it is a photon, and no other particles are

present in the jet. While this initial hypothesis can be corrected at a later point in the

algorithm, in most cases it turns out to be correct owing to the low rate of track and

Shower Maximum reconstruction failures and the low branching fraction of hadronic

tau lepton decays for modes with neutral hadrons except π0’s. Next, we define the

probability function using pre-calculated response functions (details for both are dis-

cussed in the following two sub-sections) and perform a scan in the multi-dimensional

parameter space of momenta of the particles assumed to comprise the hadronic tau

jet searching for the maximum of the likelihood function.

After the most likely combination of momenta of particles is determined, we

construct the “p-value” which measures the probability that given particle content

and momenta hypothesis could result in detector measurements less likely or equal

than the observed response. If the p-value is too low, the hypothesized particle content

is modified by adding a photon, which is assumed to be not reconstructed either due

to a rare failure or an overlap with the extrapolated position of the charged track
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(Shower Maximum cluster will be vetoed if it is reconstructed too close to the track),

and the full calculation is repeated. If the p-value remains too low, the particle content

is modified by adding a neutral hadron and the likelihood calculation is repeated. The

procedure iterates until an acceptable outcome is achieved or after running out of the

pre-set options as discussed in what follows.

3. Response Functions of the CDF Detector Sub-systems

As discussed earlier, the relevant detector measurements include tracking, measure-

ments of energy deposited in the electromagnetic and hadronic calorimeter towers,

and the measured CES cluster energy. Because the precision of the CDF tracking

is much higher than the accuracy of other measurements, the tracker response func-

tion for charged pions as a function of pion momenta can be safely approximated

by a delta function to simplify further calculations. To determine the calorimeter

response functions for charged pions, we use CDF GEANT-3 [26] based simulation

package, which was tuned using the test beam data. Isolated pions are selected using

hadronic tau decays τ± → π±ντ from an inclusive Z/γ∗ → ττ simulated sample of

events generated with Pythia [27]. We calculate response functions for charged pions

with momenta ranging from 1 to 100 GeV/c in steps of 1 GeV/c. Large fluctuations

in the development of hadronic showers and their large lateral size, frequently span-

ning across several CHA towers, make it impractical to calculate responses separately

for each tower in a multi-tower cluster. Instead, we measure hadronic calorimeter

response for charged pions by summing tower energies in a square of 3 × 3 towers

centered on the extrapolated position of the π± track. In the CEM, hadronic showers

rarely deposit energy in more than a single tower, therefore charged pion electro-

magnetic deposition is calculated using the energy in the tower pointed at by the

track associated with π±. To take into account the strong correlation of the energy
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depositions in CEM and CHA, we define a 2-dimensional response function in the

EEM versus EHAD plane. Fig. 6(b) shows an example of the calorimeter responses

in CEM and CHA for simulated isolated charged pions with momenta 25 < pπ < 26

GeV/c. We verify the accuracy of response functions obtained using simulation by

comparing them with those obtained in a pure sample of isolated charged pions in

data. When normalized to unity, these response functions represent the probability

density functions (PDF) for a charged pion of particular momentum to produce given

response in the calorimeter, which we will refer to as PCAL
π (EEM , EHAD|pπ).

Vast majority of photons in tau jets originate from π0 → γγ and typically have

energy of the order of a few GeV, making the accurate understanding of the calorime-

ter response for low energy photons particularly important. While the response func-

tions for photons can be measured directly from the simulation, validating them with

the data can be difficult owing to the challenges in obtaining a high purity sample

of low energy photons in data. Fortunately, the calorimeter response to photons and

electrons is nearly identical allowing use of a relatively high purity sample of electrons

in data obtained by tagging photon conversions. Similar to the case of charged pi-

ons, we calculate 2-dimensional response functions for photons with momenta ranging

from 1 to 100 GeV/c in steps of 1 GeV/c in the EEM versus EHAD plane. Fig. 6(a)

shows an example of the calorimeter response function for photons with the true

momenta 25 < pγ < 26 GeV/c. We denote the response functions of this type as

PCAL
γ (EEM , EHAD|pγ).

As mentioned earlier, the CES energy measurement is used in the likelihood func-

tion as, despite its modest resolution, it can help correctly assign energies in difficult

cases. Because photon candidates reconstructed in CES have highly correlated strip

and wire pulse heights, we only use the strip based measurements to determine the

energy associated with a given CES cluster. Examples of the CES response functions
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PCES
γ (ECES|pγ) for isolated photons with energies 5 < pγ < 6 GeV and 25 < pγ < 26

GeV are shown in Figs. 7(a) and (b), respectively.

4. Computation of the PPFA Likelihood

As mentioned earlier, the initial particle hypothesis assumes that each reconstructed

track is a charged pion and each reconstructed CES cluster not associated with a track

is a photon (or perhaps two merged photons, which makes little difference). Tracking

momentum measurement is taken to be exact due to the superior resolution of the

CDF tracker. To include calorimeter measurements, the highest pT track in a tau

candidate is extrapolated to the CES radius and the corresponding calorimeter tower

becomes a seed tower. A grid of 3x3 towers is formed around the seed tower. Each

track and CES cluster is associated to one tower on the grid. Each electromagnetic

tower provides its own measurement ~EEM
meas (components of this vector will be denoted

as E
EMj
meas j = 1, ..., 9) used in the likelihood. For the hadronic calorimeter, we sum

energies of all nine towers into a single measurement, EHAD
meas =

∑

E
HADj
meas , for the

entire ”super-cluster”. In assumption that decay products of tau are charged tracks

and photons, the likelihood function has the following form:

Lp(~pπ, ~pγ, ~pn| ~EEM
meas, E

HAD
meas , ~E

CES
meas) =

∫ Nγ
∏

i=1

dEHAD
γi

Nπ
∏

k=1

dEHAD
πk

Nn
∏

l=1

dEHAD
nl

×

9
∏

j=1

dEEMj
γi

dEEMj
πk

dEEMj
nl

× δ(

Nγ
∑

i=1

EHAD
γi

+
Nπ
∑

k=1

EHAD
πk

+
Nn
∑

k=1

EHAD
πn

− EHAD
meas )

×δ(
Nγ
∑

i=1

EEMj
γi

+

Nπ
∑

k=1

EEMj
πk

+

Nn
∑

k=1

EEM
πn

− EEMj
meas) × PCAL

γ (EEMj
γi

, EHAD
γi

|pγi
)

×PCAL
π (EEMj

πk
, EHAD

πk
|pπk

) ×PCES
γ (ECES

γi meas|pγi
), (4.9)

where the integration runs over all possible depositions of energy by each individual

particle in each available calorimeter measurement, the delta functions in the second



40

line ensure that the sum of the deposits for each measurement is equal to the observed

value, and the third line includes response functions for photons and charged pions

in the calorimeter and in the CES detector. One can choose to convert Eq.(4.9) into

a posterior probability distribution to estimate the hadronic tau jet energy as:

LE(Ejet| ~EEM
meas, E

HAD
meas ,

~ECES
meas) =

∫

Lp(~pπ, ~pγ| ~EEM
meas, E

HAD
meas ,

~ECES
meas)

×δ(
Nγ
∑

i=1

pγi
+

Nπ
∑

k=1

pπk
+

Nn
∑

l=1

pnl
− Ejet)d~pπd~pγd~pn (4.10)
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Fig. 8. Examples of LE(Ejet) for two representative simulated Z → ττ events.

While the integral form presented in Eqs.(4.9,4.10) appears fairly complicated,

it is straightforward to implement in the code and compute numerically using the

Monte Carlo integration technique. Values of ~pπk
and ~pγi

which maximize L(~pπ, ~pγ)

in Eq.(4.9) represent the best estimate on energies of particles in tau decay in the
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assumption that the initial hypothesis on the particle content was correct. Figure 8

shows examples of the LE(Ejet) distributions for two representative events from a

sample of simulated Z → ττ events.

5. The Reduced p-Value Definition

Photon reconstruction failures or presence of a stable neutral hadron, e.g. K0
L, may

lead to an incorrect initial particle hypothesis making it important to detect and

correct such cases. We define a p-value using Eq.(4.8), but we do two simplifications

to the definition of the likelihood Lp in Eq. 4.9 to speed up the calculations. First,

because in practice most of the cases affected by the incorrect initial hypothesis can

be identified through inconsistencies between the available calorimeter and tracker

measurements, we drop the terms associated with the CES in Eq. (4.9). Second,

we combine the nine electromagnetic towers in the hadronic tau cluster into a single

“super-tower” with energy EEM =
∑

EEMj , and define the “reduced” version of

Eq. (4.9):

L′
p(~p |(EEM

meas, E
HAD
meas ) =

∫ 9
∏

j=1

dEEMi × Lp(~p | ~EEM
meas, E

HAD
meas )×

δ(

9
∑

i=1

EEMi
meas − EEM

meas) (4.11)

We then define the “reduced” p-value according to Eq. (4.8) using the reduced

L′
p. The p-value evaluates how frequently a set of particles with true momenta ~p0 can

produce a set of measurement equally or less probable than the one observed in data.

The p-value is sensitive to inconsistencies in the available calorimeter measurements

and can be used to detect mistakes in the initial particle content hypothesis. Fig-

ure 9(a) shows the distribution of the reduced p-value for all reconstructed hadronic

tau jets in the sample of simulated Z → ττ events as a function of the relative
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difference between the reconstructed visible tau jet energy at the maximum of the

likelihood function and the true visible jet energy obtained at the particle generator

level. It is evident that a vast majority of mismeasured jets have very low reduced p-

value. As it will be shown next, most of these mismeasurements owe to the incorrect

initial particle hypothesis.
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Fig. 9. Z → ττ events in CDF II detector simulation: 1-prong taus with no photon

candidate reconstructed by CES. Left: p − value versus R(τh). Right: R(τh)

for events with small p-value before correction (dashed black line) and after

correction for missing photon (full blue line).

6. Corrections to the Particle Content Hypothesis

Based on our studies with the simulation, the majority of mismeasurements owing

to the incorrect initial particle hypothesis fall into only two categories. The first

category includes tau jets with one charged pion and typically one π0 where none of
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the photons were reconstructed in the CES. This can happen for one of the following

three reasons: (i) a simple CES reconstruction failure (either dead channels or a

photon landing outside the fiducial volume of CES, (ii) the CES cluster is vetoed due

to being too close to the extrapolated track position, or (iii) photon(s) falling into the

cracks between the calorimeter φ-wedges. The last case is likely impossible to correct

as the deposited electromagnetic energy is highly sensitive to small differences in the

electromagnetic shower development. In addition photons hitting the cracks may

deposit a substantial portion of their energy in the hadron calorimeter. All three

cases lead to a substantial underestimation of the tau jet energy as only momentum

of the track would count towards the measurement. To correct for this effect, we apply

the following procedure: if a tau candidate with a single reconstructed track and no

reconstructed photons has too small reduced p-value (p < 0.005), we first attempt

to correct it by introducing an additional photon. Because no CES measurement

is available for this photon, the term with PCES in Eq.(4.9) is removed and the

likelihood function with modified particle hypothesis L(pπ, pγ) (or the corresponding

LE) is recalculated. The new energy is taken as the updated energy of the tau

jet. Figure 9(b) shows the relative difference of reconstructed and true jet energy

for these jets before and after the correction. While the improvement is evident,

the catastrophic cases where photons hit the cracks between the calorimeter wedges

cannot be fully recovered contributing to reduced resolution. Another contribution

to broadening of the distribution after correction comes from events in the second

category which is discussed next.

Tau jets with one charged hadron and a stable neutral hadron (kaon), which is

always omitted in the initial particle content hypothesis, typically have an excess of

energy measured in the hadron calorimeter compared to what one would expect from a

single charged pion. Because the excessive energy in the hadron calorimeter detected
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p− valueγ−cor before kaon correction (dashed blue line) and after correction
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using the p-value cannot be accounted for by adding a photon at the previous step,

the p-value for these jets remains small after correcting the initial particle content

hypothesis for a photon, as shown in Fig. 10(a). Therefore, for jets with exactly

one reconstructed track and no reconstructed photons that had a low initial p-value

(p < 0.05) and continued to have a low p-value after the photon correction (the

threshold is p < 0.03), the particle content hypothesis is modified to contain one

charged pion and one neutral kaon. Technically, it is accomplished by adding a

term PCAL
n (EEM , EHAD|pn) = PCAL

π (EEM , EHAD|pn) (as the calorimeter response

for charged pions and neutral hadrons is very similar) in Eq.(4.9), and adjusting the
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argument of the delta-functions to include a new particle. The energy of the tau

jet candidate is updated with the energy obtained from maximizing Lp(pπ, pn) (or

the corresponding LE). The relative difference of the reconstructed and true tau jet

energy before and after the correction for this class of jets is shown in Fig. 10(b).
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Fig. 11. Comparison between reconstructed transverse momentum and true transverse

momentum of the hadronic tau for Z → ττ events in CDF II detector sim-

ulation. The red solid line corresponds to the likelihood method, the black

dashed line corresponds to standard CDF tau reconstruction.

7. PPFA Energy Resolution

Figures 11(a) and (b) show the relative difference between the PPFA reconstructed

tau jet transverse momentum and the true visible transverse momentum obtained at

generator level for one and three-prong hadronic tau jets. For comparison, the same

plots show the performance of the standard CDF tau reconstruction (see [15] for
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details) shown as dashed line using the same simulated Z → ττ events. It is evident

that the PPFA algorithm has been able to converge to the correct energy without

resorting to any kind of ad-hoc corrections used in the standard CDF reconstruction.

To quantify the level of improvement, we use the fraction of jets with the recon-

structed energy falling within 10% of the true jet energy (denoted as f 10% in Fig. 11),

on average the PPFA increases f 10% by about 10%. PPFA jet energy resolution dis-

tribution also has a more symmetric shape around the true energy and a reduced tail

due to jets with underestimated reconstructed energy. More obvious improvements

in the tail behavior for one-prong events owes to a larger fraction of jets containing

neutral pions with significant contribution towards the total visible jet energy.

E. PPFA Performance in Data

To validate the performance of the algorithm in a real detector setting, we use a

clean and well understood sample of CDF Z → ττ events with one tau decaying to a

lepton and another one decaying via one of the hadronic modes. We compare results

in data with the simulation based expectations paying particular attention to events

with large energy overlap and validate the p-value.

Note that unlike the case of Z → ee or Z → µµ events where lepton momentum

resolution can be inferred from the broadness of the dilepton mass spectrum, in the

case of Z → τ it is not possible due to the broad shape of di-tau mass owing to

cancellation of the missing energy contributions associated with the neutrinos from

tau decays. Therefore, to compare the performance of the PPFA based algorithm

with the standard CDF reconstruction, we perform two side-by-side proto-analyses

using similar selection that rely on discriminators provided by each of the two recon-

struction methods. We start with a sample with loosened lepton isolations that has a
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Fig. 12. Kinematic distributions demonstrating purity of the clean tau sample after
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transverse momentum of visible decay products of the hadronically decaying

tau lepton, τh.

substantially higher level of QCD multi-jet background contamination and compare

the signal to background ratio after applying selections exploring jet shape differences

for hadronic taus and generic jets. The level of improvement, if present, could be used

as a figure of merit in comparing PPFA performance with the standard method.

1. Validation of the PPFA Reconstruction Using Z → ττ

We use a fairly clean and very well understood sample of Z → ττ events collected by

CDF in Run-II in the channel where one tau decays hadronically (τ → τhντ ) and the

other decays to a light lepton (electron or muon). Selections require a tightly isolated

reconstructed muon or an electron with 20 < pT < 40GeV and a loose hadronic tau

jet candidate. Tau jet is required to have a seed track with pT > 10 GeV/c and no
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explicit requirement on the full momentum of the jet to exclude biases owing to the

choice of a tau energy reconstruction algorithm. A set of event topology cuts are

applied to reduce contamination due to cosmic rays, Z/γ∗ → ee, Z/γ∗ → µµ and

W+jets events. A full list of selections is available in [28]. Remaining QCD multi-

jet background is estimated from data using events with lepton and tau candidates

having electric charge of the same sign. We rely on simulation to estimate Z/γ∗ → ττ

, Z → ee, Z → µµ and W + jets contributions. These processes are generated using

Pythia Tune A with CTEQ5L parton distribution functions [29] and the detector

response is simulated using the GEANT-3 package [26].

Once the sample is selected, PPFA reconstruction is performed on data and

simulation. Figures 12(a) and (b) shows lepton momentum and PPFA-based hadronic

tau jet momentum distributions for the selected Z/γ∗ → ττ candidate events showing

a good agreement between data and simulation as well as demonstrating the high

purity of the sample. A thorough analysis of many other kinematic distributions has

shown similar level of agreement.

Because a large fraction of one-prong hadronic taus decay via τ±h → ντρ
±(770) →

ντπ
±, the invariant mass of one prong tau jets allows evaluating the PPFA perfor-

mance by comparing it to something known. Figures 13(a) and (b) show the invariant

mass of the candidates for one prong tau candidates in data with the simulation pre-

dictions overlaid using the PPFA approach and the standard CDF tau reconstruction.

Figures 13(c) and (d) show the distribution of the PPFA p-value for selected hadronic

tau candidates with one or three charged tracks, also showing a good agreement. In

addition, it is evident that the p-value itself can provide additional discriminating

power against the jets from multi-jet QCD events and could be used in physics anal-

yses to improve purity of the selected data.
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2. New PPFA Tools and Physics Analyses

Table I. Selections used in the two proto-analyses using either PPFA or standard CDF

selection for hadronically decaying tau jets. The first group of selections

corresponds to standard CDF selections applied first in both analyses. The

second group shows additional non-standard selections using the invariant

mass and the narrowness of the tau candidate’s jet cluster that can be applied

to both analyses. The last selection uses the PPFA p-value and is only applied

to the PPFA proto-analysis.

Selections 1-prong 3-prong

Kinematical selections:

pT GeV/c > 10 > 15

Standard CDF ID selections:

m(τ) GeV/c2 < 2.5 < 2.5

Additional ID selections applied to both algorithms:

m(τ) (0:0.25) or (0.375:1.4) (0.8: 1.4)

∆θ rad < 0.04 < 0.015

Additional PPFA-specific selections (only applicable to PPFA analysis):

p-value pv > 0.008 if pT < 20 GeV/c pv > 0.06 if pT < 30 GeV/c

The new handles available in PPFA, such as the p-value or the jet-by-jet energy

measurement uncertainty, can be used to improve sensitivity of physics analyses.

They allow categorizing events with the different signal to background ratio or used

as discriminating variables, either directly or as inputs to a multi-variate discrimina-

tors based on neural nets or decision tree techniques. Additional advantages of the
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PPFA technique come from a better measurement of the momentum spectra and an

improved measurement of jet shapes, which both allow better discrimination against

jet backgrounds. To illustrate the PPFA potential in a real data analysis setting, we

model two simple proto-analyses aiming to maximize the signal to background ratio

for the Z → ττ events by only exploiting the properties of tau jet candidates. One

of the analyses only relies on variables calculable using standard CDF reconstruction

and the other one relies on PPFA calculations (including the new p value variable).

Both analyses start with a sample of candidate Z → ττ events with a more typical for

physics analyses level of background contamination due to the QCD multi-jet events5.

Compared to the high purity sample, the “realistic” sample is obtained by loosening

isolation and some other tight quality requirements on the lepton leg and removing

the requirement on the absence of additional energetic jets in the event. The compo-

sition of this sample can be inferred from Fig. 14 showing several kinematic and jet

shape variables. Note that the pedestal near m = 0.14 GeV/c2 in the invariant mass

plot is due to the one prong tau candidates that contain no reconstructed particles

other than a single charged pion.

Table I shows the specific selections applied. Similar to the previously discussed

invariant mass of the jet m(τ), ∆θ(τ) is calculated using the momenta of individual

particles reconstructed in a jet and is the weighted angular width of the jet. It is

defined as ∆θ(τ) =
P

Ei×θi
P

Ei
, where the summation goes over particles in the jet, Ei

being the particle energy and θi is the angle between the particle and the visible

4-momentum of the tau jet. To achieve a better signal to background ratio, we apply

more elaborate selections for m(τ) and ∆θ(τ) than those customarily used at CDF.

5The clean sample used so far was obtained with the sole purpose of achieving a
high purity sample of hadronic taus and features extremely tight selections applied to
the lepton leg, which are not typical of physics analyses aiming to maximize sensitivity
to a particular process of interest.
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The specific cut values are picked by looking at distributions and are not unreasonable,

but not necessarily optimal. These selections can be applied to both the standard and

the PPFA-based analyses. Finally, we apply an additional pT -dependent cut on the

p-value. Because there is no equivalent of the p-value in the standard reconstruction,

this selection can only be applied to the PPFA-based analysis. The distributions for

these variables using PPFA definitions are illustrated in Figs. 14(b), (c) and (d). For

the PPFA-based case, the effect of these selections is illustrated in Fig. 15(a) and

(b) showing the “before” and “after” distributions for m(l, τ, E/T), the visible mass

of lepton, tau and missing transverse energy, a quantity frequently used as the final

discriminant in physics analyses [15, 16].

To obtain a quantitative figure of merit for the comparison of the two techniques,

we calculate the signal to background ratio for Z → ττ candidate events above a

certain threshold in the visible mass, m(l, τE/T) > m0, as a function of m0. Note that

backgrounds are heavily dominated by the QCD multi-jet events. The resultant S/B

ratio is shown in Fig. 15 for three cases: (i) the standard tau reconstruction with

standard tau selections, (ii) the standard tau reconstruction with the new m(τ) and

∆θ(τ) selections, and (iii) PPFA based reconstruction with the new m(τ) and ∆θ(τ)

selections and also the p-value-based selections. It is evident that the use of the PPFA

tools provides a factor of 1.7 improvement in the signal to background ratio. It is

expected that a more comprehensive utilization of the PPFA capabilities based on

categorization of events using the jet energy uncertainty and the p-value can provide

even larger improvement as compared to this simple example with box-like cuts.



52

0

200

400

600

800

1000

m(τh) GeV/c2

Ev
en

ts
 /

 (
0

.1
 G

eV
/c

2
)

CDF Run 2 Preliminary
Data
Z/γ* → τ

l
τhννν

QCD multijets

Z/γ*→ ll

W+jets
Z/γ*→ τ

l
τ
l
νννν

0              0.5            1.0           1.5            2.0           2.5            3.0

Npr(τ
h
)=1

2) GeV/chτm(
0 0.5 1 1.5 2 2.5 30

200

400

600

800

1000

CDF Run 2 Preliminary

0 0.5 1 1.5 2 2.5 30

200

400

600

800

1000

CDF Run 2 Preliminary

Data

lτ hτ →Z 
Same sign

 ll→Z 
W+jets

lτ lτ →Z 

0

50

100

150

200

250

300

Ev
en

ts
 /

 0
.0

4

CDF Run 2 Preliminary

p-value (τ
h
)

0                0.2               0.4               0.6               0.8               1.0

Data
Z/γ* → τ

l
τhννν

QCD multijets

Z/γ*→ ll

W+jets
Z/γ*→ τ

l
τ
l
νννν

Likelihood based 
hadronic tau 

reconstruction

Npr(τ
h
)=1

0
20
40
60
80

100
120
140
160
180
200
220

Ev
en

ts
 /

 0
.0

4

CDF Run 2 Preliminary

p-value (τ
h
)

0                0.2               0.4               0.6               0.8               1.0

Data
Z/γ* → τ

l
τhννν

QCD multijets

Z/γ*→ ll

W+jets
Z/γ*→ τ

l
τ
l
νννν

Likelihood based 
hadronic tau 

reconstruction

Npr(τ
h
)=3
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after Z → ττ → lτhννν̄ (l = e or µ). PPFA reconstruction(a) and standard

CDF reconstruction(b). (c) and (d): Distribution of hadronic tau candidate

p-value for events passing selection requirements in data (points) compared

to the sum of background and signal predictions. Left : 1-prong taus. Right:

3-prong taus.



53

0

500

1000

1500

2000

2500

Ev
en

ts
 /

 (
5

 G
eV

/c
)

CDF Run 2 Preliminary

pT (τ
h
) GeV/c

0             10             20             30            40             50            60

Data
Z/γ* → τ

l
τhννν

QCD multijets

Z/γ*→ ll

W+jets
Z/γ*→ τ

l
τ
l
νννν

Likelihood based 
hadronic tau 

reconstruction

Npr(τ
h
)=1 or 3

0

500

1000

1500

2000

2500

3500

Ev
en

ts
 /

(0
.1

 G
eV

/c
2
)

CDF Run 2 Preliminary

m (τ
h
) GeV/c2

0              0.5            1.0            1.5            2.0           2.5          3.0

Data
Z/γ* → τ

l
τhννν

QCD multijets

Z/γ*→ ll

W+jets
Z/γ*→ τ

l
τ
l
νννν

Likelihood based 
hadronic tau 

reconstruction

Npr(τ
h
)=1 or 3

4000

3000

0

500

1000

1500

2000

2500

Ev
en

ts
 /

 0
.0

4

CDF Run 2 Preliminary

p-value (τ
h
)

0                0.2               0.4               0.6               0.8               1.0

Data
Z/γ* → τ

l
τhννν

QCD multijets

Z/γ*→ ll

W+jets
Z/γ*→ τ

l
τ
l
νννν

Likelihood based 
hadronic tau 

reconstruction

Npr(τ
h
)=1 or 3

0

2000

3000

4000

5000

6000

7000

Ev
en

ts
 /

(0
.0

5
 r

ad
)

CDF Run 2 Preliminary

∆θ (τ
h
)  rad

0        0.01     0.02    0.03     0.04     0.05    0.06    0.07    0.08

Data
Z/γ* → τ

l
τhννν

QCD multijets

Z/γ*→ ll

W+jets
Z/γ*→ τ

l
τ
l
νννν

Likelihood based 
hadronic tau 

reconstruction

Npr(τ
h
)=1 or 3

1000

Fig. 14. 1- and 3-prong taus in the QCD enriched sample. Data (points) compared

to the sum of background and signal predictions: (a) transverse momentum

of visible decay products (b) hadronic tau visible invariant mass, (c) p-value

distribution, (d) ∆θ(τ) distribution.



54

0

400

800

1200

1400

1800

m(l,τh,ET) GeV/c2

Ev
en

ts
 /

 (
5

 G
eV

/c
2
)

CDF Run 2 Preliminary
Data
Z/γ* → τ

l
τhννν

QCD multijets

Z/γ*→ ll

W+jets
Z/γ*→ τ

l
τ
l
νννν

0              20             40             60             80           100         120

Npr(τ
h
)=1 or 3

1600

1000

600

200

Likelihood based 
reconstruction

0

200

400

600

700

900

m(l,τh,ET) GeV/c2

Ev
en

ts
 /

 (
5

 G
eV

/c
2
)

CDF Run 2 Preliminary
Data
Z/γ* → τ

l
τhννν

QCD multijets

Z/γ*→ ll

W+jets
Z/γ*→ τ

l
τ
l
νννν

0              20             40             60             80           100         120

Npr(τ
h
)=1 or 3

800

500

300

100

Likelihood based 
reconstruction

and ID selections

m0(l,τh,ET) GeV/c2

N
Z/

γ*
→

ττ
(m

>
m

0
)/

N
Q

CD
(m

>
m

0
)

0        10       20       30      40       50       60       70      80     90

Likelihood-based reco + new ID selections

Standard reco + new ID selections

Standard reco

CDF Run 2 Preliminary

0

4

6

8

10

12

2

Fig. 15. Visible mass, M(τ, l, E/T). Events with 1 and 3-prong taus. Data (points)

compared to the sum of background and signal predictions. (a): QCD en-

riched sample before likelihood-based identification requirements, (b): QCD

enriched sample after likelihood-based identification is applied; (c) S/B ratio

as a function of minimal threshold on M(τ, l, E/T). Black dash-dotted line

corresponds to the standard CDF tau identification. Green dashed line - im-

proved standard CDF tau identification. Blue full line - likelihood-based tau

identification.



55

CHAPTER V

MISSING MASS CALCULATOR, A NEW TECHNIQUE FOR FULL MASS

RECONSTRUCTION OF THE RESONANCES DECAYING TO ττ

Invariant mass reconstruction is commonly used in experimental searches for new

physics, such as for the Higgs or Z′ bosons, as well as in measurements of properties

of known resonances. This technique is relatively straightforward for e+e−, µ+µ−, or

di-jet final states. The accuracy of mass reconstruction in these channels is domi-

nated by the detector resolution for lepton or jet momenta. The sensitivity of “mass

bump-hunting” analyses depends critically on how narrow the signal invariant mass

distribution is compared to the (usually broad) distributions in background processes.

Unfortunately, this simple strategy is much less effective in searches for resonances

decaying to a pair of τ leptons because the τ lepton energy associated with neutrinos

escapes detection, and only visible products (leptons in the case of leptonic τ decays

or low multiplicity jets in the case of hadronic τ decays) are observed in the detector.

Each τ lepton decay involves one or two neutrinos, depending on the final state:

hadronic (τ → ντ + hadrons) or leptonic (τ → ντ + lν̄l, where l=e or µ). In pp or

pp̄ collisions, the full energy of neutrinos cannot be determined. Instead, one can

only reconstruct a transverse energy imbalance in the detector (or missing transverse

energy, E/T), which is representative of the total transverse momentum of all neutri-

nos in the event. Therefore, when two or more neutrinos are produced in the same

event, their individual transverse momenta and directions cannot be reconstructed.

The situation in decays of heavy resonances into two τ leptons is even more com-

plex. In these events, the two τ ’s are often produced “back-to-back” and the missing

momentum associated with their neutrinos partially cancels out. As a result, the in-

variant mass of a resonance cannot be directly reconstructed from the E/T and visible
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decay products of τ leptons. Various techniques exist to partially reconstruct the

mass of resonances in ττ final states. However, the reconstructed mass distributions

for signal processes are rather broad (with long tails and typical core resolutions on

the order of ∼20%), which makes it difficult to separate them from the background

and considerably reduces the signal significance. This poses a major challenge for the

Higgs boson searches in the H → ττ channel, one of the most important channels

for discovering a low-mass Higgs boson at the LHC [30, 31], whether in the context

of the Standard Model or beyond (for example, in supersymmetric models). Another

challenge in searching for a low-mass Higgs boson in the ττ channel is the large and

irreducible background from Z/γ∗ → ττ events. This is because the Z/γ∗ background

is several orders of magnitude larger than any expected Higgs signal, and its broad

partially reconstructed mass distribution completely dominates the signal region (for

example, see Fig. 16 or reference [16]). Therefore, a major improvement in ττ invari-

ant mass, Mττ , reconstruction techniques is needed in order to significantly enhance

the sensitivity of H → ττ searches at the Tevatron and LHC experiments.

We propose a new method1, which substantially improves the accuracy of the

ττ invariant mass reconstruction. We expect it will lead to a major improvement in

the sensitivity of the Higgs boson searches in the H → ττ channel at the Tevatron

and LHC. In the next section, we briefly review currently used methods. Section B

describes the new technique and illustrates its performance using a Monte Carlo

simulation with a realistic detector resolution. In Sec. C, we report the results of

tests on a clean sample of data Z/γ∗ → ττ events collected by the CDF experiment

at the Tevatron.

1The material presented in this chapter is taken from Ref [28] where I am the
author together with P. Murat, A. Pranko and A. Safonov. The permision from
Elsevier is granted.
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obtained for the fully hadronic ττ decay mode. Events are simulated with a
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A. Existing Methods for ττ Mass Reconstruction

The two methods frequently used at hadron colliders either rely on reconstructing a

partial invariant mass or use the collinear approximation. In this section, we review

these techniques and discuss their advantages and shortcomings.

1. The Transverse Mass Method

Neutrinos from the τ decays escape detection and make it impossible to determine the

4-momenta of τ leptons and thus Mττ . Therefore, one of the simplest and frequently

used methods relies on a partial (or reduced) invariant mass reconstruction. Examples

include either the invariant mass of visible decay products of the two τ leptons, the
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visible mass, or the invariant mass of the visible decay products and E/T in the event,

the transverse mass. The latter is defined as follows:

M2(τvis1 , τvis2 , E/T) = P µPµ, (5.1)

P µ = P µ(τvis1) + P µ(τvis2) + P µ(E/T),

where P µ(E/T)=(
√

E/T
2
x + E/T

2
y, E/Tx, E/Ty, 0) is a 4-momentum corresponding to missing

transverse energy and P µ(τvis1) and P µ(τvis2) are the 4-momenta of the visible τ

decay products. The transverse mass provides a somewhat better separation from

the QCD multi-jet backgrounds with fake τ signatures than the visible mass, and

it is often preferred in data analyses. The advantage of this technique is that the

partial mass can be defined for all signal events, thus preserving the statistical power

of the available data. However, ignoring or not fully accounting for the neutrino

momenta biases and broadens the reconstructedMττ distributions, and therefore leads

to a significantly reduced sensitivity in searches and measurements. This problem is

particularly prominent in the low-mass H → ττ search, where the signal cannot be

separated from the much larger and very broad Z → ττ background. To illustrate

this we simulated inclusive Z/γ∗ → ττ and gg → H → ττ events produced in pp̄

collisions at
√
s=1.96 TeV. Events are simulated with Pythia [27] supplemented with

the TAUOLA package [32] for τ decays. We select events with both τ ’s decaying

hadronically, pT (τvis1,2) > 10 GeV/c2 and E/T > 10 GeV. We assume 10% resolution

for hadronic τ -jets and 5 GeV resolution for x- and y- components of ~E/T (the realistic

detector resolution is further discussed in Sec. 3). The left plot in Fig. 16 shows the

transverse mass M(τvis1 , τvis2, E/T) distribution for the simulated events.
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2. Collinear Approximation Technique

The collinear approximation is another frequently used technique [30, 31]. This

method was first proposed in reference [33] to reconstruct the invariant mass in ττ

decays of a Higgs boson produced in association with an energetic jet. It is based on

two important assumptions: that the τ and all decay products are nearly collinear

(i.e., φν≃φvis and θν≃θvis); and that the E/T in the event is due only to neutrinos. In

this case, the total invisible momentum carried away by neutrinos in each τ decay

can be estimated by solving two equations:

E/Tx = pmis1 sin θvis1 cos φvis1 + pmis2 sin θvis2 cosφvis2

E/Ty = pmis1 sin θvis1 sinφvis1 + pmis2 sin θvis2 sinφvis2 , (5.2)

where E/Tx and E/Ty are the x- and y-components of the E/T vector, pmis1 and pmis2

are the combined invisible momenta (there can be two ν’s in a τ decay) of each τ

decay, and θvis1,2
and φvis1,2

are the polar and azimuthal angles of the visible products

of each τ decay. Then, the invariant mass of the ττ -system can be calculated as

Mττ=mvis/
√
x1x2 , where mvis is the invariant mass of visible τ decay products,

and x1,2=pvis1,2/(pvis1,2 + pmis1,2) are momentum fractions carried away by visible τ

decay products. Despite offering the great advantage of a fully reconstructed ττ mass

(Mττ ) instead of a partial visible mass, the collinear approximation still has significant

shortcomings. The technique suits well for events where the ττ system is boosted, i.e.,

produced in association with a large ET jet, and the visible τ decay products are not

back-to-back in the plane transverse to the beam line. The last requirement is needed,

because the system of Eqs. 5.2 becomes degenerate2 if φvis1=φvis2 + π and solutions

2The system of Eqs. 5.2 is also degenerate when φvis1=φvis2 , which is almost never
achieved experimentally.
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pmis1,2∼sin−1(φvis1 − φvis2) diverge as |φvis1 − φvis2| → π. Unfortunately, the majority

of gg → H → ττ events are produced with τ leptons in nearly the back-to-back

topology. Therefore, this technique is applicable only to a relatively small fraction of

such events. The collinear approximation is also very sensitive to the E/T resolution

and tends to over-estimate the ττ mass, leading to long tails in the reconstructed mass

distribution. This effect is especially undesirable for low-mass Higgs boson searches,

where the tails of a much larger Z → ττ background completely overwhelm the

expected Higgs peak region. The right plot in Fig. 16 shows the distribution of Mττ

reconstructed with the collinear approximation for simulated inclusive Z/γ∗ → ττ

and gg → H → ττ events with the same selection requirements as in the example of

the transverse mass distribution.

B. The Missing Mass Calculator Technique

The new technique proposed in this paper, the Missing Mass Calculator (MMC)

method, allows for a complete reconstruction of event kinematics in the ττ final states

with significantly improved invariant mass and neutrino momentum resolutions. The

MMC technique does not suffer from the limitations of the collinear approximation

described in the previous section and can be applied not only to the events where

ττ system is boosted but also to the events with back-to-back topologies without

sacrificing the reconstructed mass resolution.

1. The Concept and Method Description

To facilitate the description of the method, we begin with assuming a perfect detector

resolution and that there are no other sources for transverse missing energy apart from

the neutrinos from the τ lepton decays. Under these assumptions, full reconstruction
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of the event topology requires solving for 6 to 8 unknowns: x-, y-, and z-components

of the invisible momentum carried away by neutrino(s) for each of the two τ leptons

in the event, and, if one or both τ ’s decay leptonically, the invariant mass of the

neutrinos from each leptonic τ decay. However, there are only 4 equations connecting

these unknowns:

E/Tx = pmis1 sin θmis1 cos φmis1 + pmis2 sin θmis2 cos φmis2

E/Ty = pmis1 sin θmis1 sinφmis1 + pmis2 sin θmis2 sin φmis2

M2
τ1

= m2
mis1

+m2
vis1

+ 2
√

p2
vis1

+m2
vis1

√

p2
mis1

+m2
mis1

−2pvis1pmis1 cos ∆θvm1

M2
τ2

= m2
mis2

+m2
vis2

+ 2
√

p2
vis2

+m2
vis2

√

p2
mis2

+m2
mis2

−2pvis2pmis2 cos ∆θvm2 (5.3)

where E/Tx and E/Ty are the x- and y-components of the ~E/T vector, pvis1,2
, mvis1,2

,

θvis1,2 , φvis1,2 are the momenta, invariant masses, polar and azimuthal angles of the

visible τ decay products, and Mτ=1.777 GeV/c2 is the τ lepton invariant mass. The

rest of the variables constitute the “unknowns” which are the combined invisible

(“missing”) momenta ~pmis1,2
carried away by the neutrino (or neutrinos) for each of

the two decaying τ leptons and the invariant mass of the neutrino(s) in the τ decay,

mmis1,2 . Finally, ∆θvm1,2 is the angle between the vectors ~pmis and ~pvis for each of the

two τ leptons, and it can be expressed in terms of the other variables. For hadronic

decays of τ ’s, the mmis is set to 0 as there is only one neutrino involved in the decay.

This reduces the number of unknowns.

The number of unknowns (from 6 to 8, depending on the number of leptonic

τ decays) exceeds the number of constraints. Therefore, the available information

is not sufficient to find the exact solution. However, not all solutions of this under-
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constrained system are equally likely, and additional knowledge of τ decay kinematics

can be used to distinguish more likely solutions from less likely ones. An example of

such additional information is the expected angular distance between the neutrino(s)

and the visible decays products of the τ lepton. Figure 17 shows the distribution

for the distance ∆R=
√

(ηvis − ηmis)2 + (φvis − φmis)2 between the directions of visible

and invisible (missing) decay products3 for the three distinct τ decay types: leptonic,

1-prong hadronic and 3-prong hadronic. We incorporate this additional knowledge of

decay kinematics as probability density functions in a suitably defined global event

likelihood as discussed in what follows to provide additional constraints and to obtain

a better estimator of Mττ .
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Fig. 17. Example of the probability distribution functions P(∆R, pτ ) for a particular

value of the original τ lepton momentum (pτ ). These functions are used

in the calculation of the likelihood L for three cases: 1-prong τ (left plot),

3-prong τ (middle plot), and leptonic decays (right plot) of τ leptons. These

distributions depend only on the decay type and initial momentum of the τ

lepton.

3For simplicity, we use the ∆R parameterization, although a 3-dimensional angle
between the decay products might be a more natural choice.
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We first describe the method for the better constrained case, where both τ ’s

decay hadronically, and then we explain how the machinery is adjusted for the case

of leptonic decays. When both τ ’s decay hadronically, the system of Eqs. 5.3 can be

solved exactly for any point in, for example, the (φmis1, φmis2) parameter space. For

each point in that grid, the vectors ~pmis1,2 are fully defined and, therefore, one can cal-

culate the distance ∆R1,2 between the vector ~pvis1,2 and the current assumed direction

of ~pmis1,2
. To evaluate the probability of such decay topology, we use ∆R distributions

similar to those shown in Fig. 17, but we take into account the dependence of the

distribution on the momentum of the initial τ lepton. If the τ lepton polarization is

neglected, the ∆R distribution depends only on the τ momentum and decay type,

but not on the source of τ ’s. Therefore, we use simulated Z/γ∗ → ττ events to

obtain ∆R distributions for small bins (5 GeV/c) in the initial τ momentum, pτ , in

the range 10 GeV/c<pτ<100 GeV/c (the range can be extended to both smaller and

larger values). Events are simulated using Pythia supplemented with the TAUOLA

package for τ decays. To simplify the calculations further, we parametrize the ∆R

distributions by fitting them with a linear combination of Gaussian and Landau func-

tions. Examples of such fits are shown as solid lines in Fig. 17. The pτ -dependence

of the mean, width and relative normalization of the Gaussian and Landau is then

parametrized as p0/(pτ + p1p
2
τ ) + p2 + p3pτ + p4p

2
τ (where pi are the coefficients of

the parametrization), yielding fully parametrized distributions P(∆R, pτ ), which can

be used to evaluate the probability of a particular τ decay topology. To incorporate

this information as an additional constraint, we define the logarithm of the event

probability (or likelihood) as follows:

L = − log (P(∆R1, pτ1) × P(∆R2, pτ1)), (5.4)

where functions P are chosen according to one of the decay types. To determine
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the best estimate for the ττ invariant mass in a given event, we produce an Mττ

distribution for all scanned points in the (φmis1, φmis2) grid weighed by a corresponding

probability, P(∆R1, pτ1) × P(∆R2, pτ1). The position of the maximum of the Mττ

distribution is used as the final estimator of Mττ for a given event. An example of

such a Mττ histogram for randomly selected H → ττ events of each category is shown

in Fig. 18.
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Fig. 18. Example of theMττ distribution filled for all grid points in one of the randomly

selected H → ττ events for each of the three decay modes. An entry for each

point is weighted by its probability. The plot on the left shows Mττ for the

case of the ideal detector resolution and the plot on the right demonstrates

Mττ for the same three events in the case of a realistic detector resolution.

All distributions are normalized to unit area.

For events where one or both τ leptons decay leptonically, the above procedure is

adjusted to account for the unknown value of mmis of the two neutrinos in each of the

leptonically decaying τ ’s in the event. In this case, the scan is performed in a phase

space of higher dimensionality: (φmis1 ,φmis2,mmis1), if only one of the two τ ’s decay



65

leptonically; or (φmis1 ,φmis2 ,mmis1 ,mmis2), if both decay τ ’s decay to leptons. As in

the fully hadronic mode, one can unambiguously reconstruct the 4-momenta of both

τ leptons for each point on the grid and calculate the event probability according to

Eq. 5.4. For simplicity, we scan uniformly in the entire range of kinematically allowed

values of mmis assuming a flat probability function, but a scan performed according

to the mmis probability distribution function obtained from simulation may improve

the algorithm performance.

2. Performance of the MMC Technique with Ideal Detector Resolution

To evaluate the performance of the MMC algorithm, we again use inclusive Z/γ∗ → ττ

and gg → H → ττ (with MH=115, 120, and 130 GeV/c2) events produced by

the Pythia MC generator supplemented with the TAUOLA package. All events are

generated for pp̄ collisions at
√
s =1.96 TeV. However, the algorithm performance for

events produced in pp collisions at the LHC is expected to be very similar to that

for ττ events at the Tevatron. Unless it is otherwise noted, we select events where

both visible τ leptons have pT>10 GeV/c and E/T>10 GeV (E/T is calculated as a

combined transverse momentum of all neutrinos from both τ decays). The events

are categorized according to the decay mode of each of the two τ leptons (leptonic,

1-prong or 3-prong hadronic), and the ττ mass is reconstructed using the appropriate

version of the algorithm. Results forH → ττ events withMH =115 GeV/c2 are shown

in Fig. 19 for each of the three decay categories. In all cases, the peak position of the

reconstructed Mττ distribution is within ∼2% of the true mass, indicating that the

assumptions used in the algorithm do not bias the reconstructed mass. The resolution

of the reconstructed Mττ , defined as the RMS of the mass distribution in the range

of (1.0 ± 0.4) ×M true
ττ , changes from ∼8% for events with both τ leptons decaying

hadronically to ∼13% when both τ leptons decay leptonically. The worse resolution
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in the leptonic modes is due to the weaker constraints on the system. The fraction of

events where Eqs. 5.3 cannot be solved for any of the grid points ranges from ∼1%

to 3%, which demonstrates the high reconstruction efficiency of the MMC algorithm.

Figure 19 shows comparison of the reconstructed ττ mass in Z/γ∗ and Higgs boson

events with MH =115 and 130 GeV/c2 when both τ leptons decay hadronically.
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Fig. 19. Left plot demonstrates the reconstructed Mττ in H → ττ events with

MH =115 GeV/c2 for each of the three decay categories: both τ ’s decay

hadronically (solid line); one τ decays leptonically and the other one hadron-

ically (dashed line); and both τ ’s decay leptonically (dashed-dotted line).

Right plot shows the reconstructed mass in Z/γ∗ → ττ and H → ττ events

with MH =115 and 130 GeV/c2 in the fully hadronic decay mode. Results are

obtained in the assumption of the ideal detector resolution. Each distribution

is normalized to unit area.

3. Effects of Detector Resolution

To evaluate the importance of detector effects on MMC performance, we use the same

inclusive Z/γ∗ → ττ and gg → H → ττ events and smear the E/T and momenta of
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the visible τ decay products according to typical detector resolutions4 at the LHC

and Tevatron experiments [15, 25, 30, 31]. We assume 3% and 10% resolutions for

momenta of light leptons and hadronic τ -jets, respectively. The E/T resolution for each

of the two (x- and y-) components is taken to be σx=σy=σ=5 GeV [34]. Note that

in a real experimental environment, the mismeasurements in lepton or hadronic τ -jet

momenta also lead to an additional mismeasurement in E/T. This effect is properly

accounted for in our studies. Angular resolutions for visible τ decay products of

typical detectors are usually accurate enough to have no noticeable effect on our

calculations.

We find that mismeasurements of the momentum of τ lepton decay products

alone have little effect on the performance of the algorithm. The Mττ peak position

and resolution are nearly unaffected and the efficiency is decreased by ∼3-7% as a

result of mismeasurements in the momenta of visible τ decay products, which are

also propagated into E/T. The stability of the peak position is related to a built-in

self-correcting mechanism in the algorithm, which compensates slight under(over)-

estimations in the measured momenta of visible decay products by over(under)-

estimating the missing momentum, thus leading to the correctly reconstructed mo-

mentum of the original τ lepton.

One could expect the effects of finite E/T resolution to degrade the algorithm

performance. We find that, if not taken into account, a 5 GeV resolution in E/T

results in a 30-40% drop in reconstruction efficiency, long tails in the reconstructed

Mττ distribution, and a significant degradation in the Mττ resolution (e.g., from

∼8% to ∼18% in fully hadronic ττ decay mode). In particular, a large reduction in

the reconstruction efficiency occurs because mismeasurements in E/T break the key

4For simplicity, we assume Gaussian detector resolutions in this study.
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Fig. 20. Left plot illustrates the reconstructed Mττ mass in Z → ττ (solid line) and

H → ττ events with MH =115 (dashed line) and 130 GeV/c2 (dashed-dotted

line) in the fully hadronic decay mode. Right plot demonstrates a comparison

of the reconstructed mass in H → ττ events with MH =115 GeV/c2 when

both τ ’s decay hadronically (solid line) and when one τ decays leptonically

and the other one hadronically (dashed line). All results are obtained by using

the MMC technique in events simulated with a realistic detector resolution.

Each distribution is normalized to unit area.

assumption that the neutrinos from the τ decays are the sole source of E/T in the

event (see Sec. 1 and Eqs. 5.3). To mitigate these effects, the implementation of the

MMC technique in a realistic experimental environment has to be adjusted to allow

for possible mismeasurements in E/T. It is achieved by increasing the dimensionality of

the parameter space in which the scanning is performed to include the two components

of the E/T resolution (for E/Tx and E/Ty). In this case, the event likelihood, L, has to

be augmented with the corresponding resolution functions:

L = − log (P(∆R1, pτ1) × P(∆R2, pτ2) ×P(∆E/Tx) × P(∆E/Ty)), (5.5)
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where the probability functions P(∆E/Tx) and P(∆E/Ty) are defined as:

P(E/Tx,y) = exp

(

−
(∆E/Tx,y)

2

2σ2

)

(5.6)

where σ is the resolution (which we take to be 5 GeV) and ∆E/Tx,y are the differences

between measured values of x- or y- components of E/T and the values in the param-

eter space while scanning over E/Tx and E/Ty. In a real experimental setup, the E/T

uncertainty can be larger in a particular direction, for example, if there is an energetic

jet. In such cases, the uncertainty in the jet energy measurement will increase the

uncertainty in E/T in the direction of the jet. These effects can be accounted for by

suitably defining the x- and y- directions on an event-by-event basis and by choosing

the appropriate σx and σy, which will not be equal to each other in general.

We evaluate the performance of the modified algorithm (with the E/T resolution

scan) using Z → ττ and H → ττ events smeared with a realistic detector resolution

as described above. Figure 20 shows the distribution of the reconstructed Mττ in the

fully hadronic decay mode for three samples: inclusive Z/γ∗ → ττ and gg → H → ττ

with MH=115 and 130 GeV/c2. Right plot in the same Fig. 20 demonstrates a

comparison of the reconstructed mass in H → ττ events with MH=115 GeV/c2 in

the case when both τ ’s decay hadronically (solid line) and in the case when one

τ decays leptonically and the other one hadronically (dashed line). We find that

the modified MMC algorithm recovers almost all lost efficiency (to the level of 97-

99%) and significantly improves the relative Mττ resolution (to the level of ∼14%).

The reconstructed mass peak position for each of the resonances is consistent with

the corresponding true mass. We also observe that the mass resolution somewhat

improves (at the level of 1-2%) for events with higher E/T and/or higher pT of visible

decay products.
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4. Comparisons with Existing Methods

Figure 21 shows the reconstructed Mττ distributions in H → ττ events with Mh=115

GeV/c2 obtained by using the MMC algorithm (black histogram) and the collinear

approximation (red line). The events are simulated with realistic detector resolution

effects as described in the previous section and the same selection requirements are

applied. Two categories of ττ events are considered: both τ leptons decay hadroni-

cally (left plot in Fig. 21), and one leptonic and one hadronic τ decay (right plot in

Fig. 21). The difference in normalizations of the MMC and collinear approximation

results reflects a higher efficiency (by a factor of ∼1.7) of the MMC method. This

is because the substantial fraction of events have a moderate E/T or approximately

back-to-back topology and are non-reconstructible by the collinear approximation

technique. This happens when small mismeasurements in E/T lead to configurations

for which Eqs. 5.2 have no solution. In contrast, the MMC method resolves this prob-

lem and has an average efficiency of 97-99%. In addition to a better resolution in the

core of the Mττ distribution, an important feature of the MMC technique is the ab-

sence of the long tail toward higher masses present in the distribution obtained using

the collinear approximation. This tail is associated with the events of approximately

back-to-back topology, where the collinear approximation diverges as cos ∆φ →1.

(∆φ is the angle between two visible τ decay products in the plane transverse to

the beam line.) The reason for this divergency is discussed in Sec. 2. The effect is

illustrated in Fig. 22, which shows a comparison of the ratio of the reconstructed and

true mass as a function of cos ∆φ for the two methods. In contrast to the collinear

approximation, the absence of long tails toward large masses in the MMC technique

presents a significant improvement for low-mass Higgs boson searches in the H → ττ

channel by significantly reducing a large Z → ττ background, which would otherwise
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completely overwhelm the Higgs search region.
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Fig. 21. Reconstructed mass of the ττ system for gg → H → ττ events withMH = 115

GeV/c2 simulated with realistic detector resolution effects. Results of the

MMC technique (solid line) are compared to those based on the collinear

approximation (dashed line). Two categories of ττ events are considered:

when both τ leptons decay hadronically (left plot), and when one of the τ

leptons decays to e or µ and the other τ decays hadronically (right plot).

The difference in normalizations of the MMC and collinear approximation

results reflects a higher efficiency of the MMC method. A long tail in the

Mττ distribution for the collinear approximation is due to the events where

the two τ leptons have approximately back-to-back topology.

It is also important to point out that the algorithm efficiency and the shapes of

likelihood L distributions are expected to be different for events with true τ leptons

and those where jets are misidentified as hadronically decaying τ leptons. This may

offer an additional handle on the backgrounds with the misidentified τ leptons, most

notably W+jets and QCD multi-jet events, and it needs to be further investigated.
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Fig. 22. Distribution of the ratio of the reconstructed invariant mass Mττ versus

cos ∆φ, where ∆φ is the azimuthal angle between visible decay products of

the two τ leptons in H → ττ events with Mh=115 GeV/c2. Results of the

MMC method (left plot) are compared to those of the collinear approxima-

tion (right plot). Note that the new method performs significantly better for

nearly back-to-back topology (cos ∆φ →1), which constitutes the bulk of all

ττ events.

C. Performance With Data and Monte Carlo After Full Detector Simulation

To illustrate the power of the proposed method using real data, we select a sample

of clean Z/γ∗ → ττ events collected by the CDF experiment [35] in pp̄ collisions at a

center-of-mass energy
√
s=1.96 TeV at the Tevatron. We obtain a high purity sample

of ττ events in the channel where one of the τ leptons decays into a light lepton (e

or µ) while the other decays into one of the hadronic modes. The requirement of

a well isolated muon or electron significantly reduces QCD multi-jet backgrounds in

this channel. We then compare the observed ττ invariant mass spectrum of Z/γ∗ →

ττ events reconstructed using the MMC technique with results obtained using the

collinear approximation. Data are also compared with predictions obtained from
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Monte Carlo (MC) simulation. Signal events and backgrounds coming from Z/γ∗ →

ee/µµ and W + jets processes are generated by Pythia Tune A with CTEQ5L parton

distribution functions [29]. The detector response is simulated with the GEANT-3

package [26]. QCD multi-jet background is estimated from data by using events with

lepton candidates of the same charge.

1. Data Selections

We ensure that the event selection is not sensitive to a potential Higgs boson signal

to avoid biases in the H → ττ analysis. This is achieved by using the same selections

as in Chapter IV, which are extremely tight, thus effective for only a small fraction of

Z/γ∗ → ττ and H → ττ events. In fact, the signal acceptance is reduced by a factor

of ∼3 compared to the search for H → ττ .

2. Mass Reconstruction using the MMC Technique

Although Z/γ∗ → ττ events in our data sample have no jets, a pair of τ leptons

may be accompanied by one or more jets when different event selection requirements

are applied. Therefore, we describe the E/T resolution parameterization for events

with Njet=0 and Njet>0. For this purpose, we only count jets with ET>15 GeV and

|η|<3.6.

For Njet=0 events, we perform scans for the x- and y-components of E/T. The

corresponding resolutions of each E/T component are parametrized by Gaussian dis-

tributions (Eq. 5.6) with width σUE , which is a function of unclustered energy5 in the

event: σUE=p0 + p1

√

∑

ET . We use the same values of p0 and p1 as reported in the

CDF publication [34].

5The unclustered energy is defined as the scalar sum of ET for all calorimeter
towers which are not included in electron, jet or hadronic τ reconstruction.
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In events with Njet>0, we consider the E/T resolution in the directions parallel

(σ‖) and perpendicular (σ⊥) to the direction of a leading jet in the event. We take

σ⊥=σUE and σ‖=
√

σ2
UE + σ2

jet, where σjet is the jet energy resolution which is a

function of the jet ET and η. For σjet, we use a simplified version (assuming Gaussian

jet energy resolution) of the parameterization reported in Ref. [34]. If there is more

than one jet in the event, we project σjet for each additional jet onto axes parallel

and perpendicular to the leading jet direction. These projections are then added in

quadrature to σ‖ and σ⊥, respectively. Finally, we perform scans for E/T components

parallel and perpendicular to the leading jet direction.

3. Reconstructed Mass Spectrum in Data

Figure 23 shows the ττ invariant mass distribution obtained with the MMC and

collinear approximation methods for our data sample of Z/γ∗ → ττ events. The

left plot shows the ττ mass calculated with the MMC technique and compares data

with the sum of background and signal predictions. The first bin of the distribution

contains events where no solution for Mττ was found. We note that events unrecon-

structed by the MMC method are predominantly from background processes.

Excellent performance of the MMC technique and its advantage over the collinear

approximation in terms of resolution and reconstruction efficiency is clearly demon-

strated by differences in shape and normalization of the Mττ distributions in the

right plot of Fig. 23. To facilitate a comparison, the background predictions are

subtracted from the Mττ distributions in data. Events with the reconstructed mass

Mττ>160 GeV/c2 are outside the histogram range and are shown in the overflow bin.

The fraction of such events is negligible (∼0.3%) for the MMC method, while it is

∼18% for the collinear approximation. Shapes of the distributions agree well between

data and simulation, therefore we use simulated Z/γ∗ → ττ events to estimate the
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Fig. 23. Reconstructed mass of the ττ system in Z/γ∗ → ττ → lτhνν
‘ν̄ (l = e or

µ) candidate events using the MMC and collinear approximation techniques:

(a) ττ mass reconstructed with MMC technique, data (points) compared to

the sum of background and signal predictions; (b) comparison of the MMC

(filled circles are data and red line is the signal prediction) and collinear

approximation (open circles are data and blue line is the signal prediction)

results after subtracting the corresponding background predictions. Unre-

constructed events are shown in the first histogram bin (Mττ∼0). Events

with Mττ>160 GeV/c2 are outside the histogram range and are shown in the

overflow bin.

resolution and efficiency achieved by the MMC technique. We follow the definition

introduced in Sec. B and define resolution as the RMS of the Mττ/M
true
ττ distribution

in the 0.6-1.4 range, where Mττ is the reconstructed mass and M true
ττ is the gener-

ated mass. We find the resolution to be ∼16% and the reconstruction efficiency to

be ∼99%, in good agreement with the results obtained using the simplified detector

simulation model in Sec. 3. In contrast, the reconstruction efficiency of the collinear

approximation method is found to be ∼42%. As explained in Sec. 3, events where

the two τ leptons are back-to-back in the x− y plane are particularly challenging for
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the collinear approximation; however, such events represent a major fraction of the

H → ττ signal. A reliable ττ mass reconstruction with the collinear approximation

is possible only for a small fraction of boosted ττ events (with smaller angles between

the τ ’s, ∆φ(ττ), and higher values of E/T). The MMC method does not have such

limitations, thus giving a substantial increase in the signal acceptance.
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CHAPTER VI

DATA ANALYSIS

A. Introduction

In this chapter we describe the search for the Higgs boson using 7.8 fb−1 of proton-

antiproton collisions collected by the CDF detector. The considered channel is H →

ττ . The final states are categorized based on the flavour of the leptonic tau decay

(electron or muon), type of the hadronic tau decay (1- or 3-prong) and the presense

of an energetic jet (ET>30 GeV).

1. Analysis Overview

We search for the Higgs boson decaying to a pair of tau leptons. Our search is sensitive

to all four possible production mechanisms at the Tevatron: ggH, WH, ZH and VBF.

There are a number of final states in the ττ channel. Tau lepton is not a stable

particle and it decays leptonically or hadronically. We use the following notations

for tau decay modes: τe (τ → eντνe) or τµ (τ → µντνµ) for leptonic decays and τh

(τ → N trkπ±Nneutrπ0ντ , where N trk = 1 or 3 is the number of charged pions and

Nneutr ≥ 0 is the number of neutral pions) for hadronic decays. Table II shows the

fraction of events for each ττ final state. While τhτh has the largest branching fraction,

it has overwhelming QCD background due to the large probability for a QCD jet to be

misidentified as a τh candidate. Events where both tau leptons decay to electrons,τeτe,

or to muons, τµτµ have relatively low contribution to the total number of events and

suffer from large background due to Drell-Yan process [36]. Events with one tau

decaying hadronically and another decaying to light leptons are the most valuable as

they have large branching fraction and the presence of a well identified electron or
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muon allows significantly reduce QCD background. For this reason this analysis is

optimized for this type of events. Yet efficient identification of hadronically decaying

taus is important to minimize the rate of quark or gluon jets misidentified as hadronic

tau jets.

Apart from the QCD multijet background, Z → ττ events pose a challenge

for H → ττ search as Z boson has a large production rate and its mass is close

to a possible mass of the Higgs boson. To separate Higgs signal from irreducible Z

background we use a novel technique, Missing Mass Calculator (MMC), to reconstruct

the full mass of ττ system [28].

Table II. H → ττ final states

Final state Fraction of events, % Comment

τhτh 46 Large QCD multijet background.

τeτe 3 Large Drell-Yan background.

τµτµ 3 Large Drell-Yan background.

τeτµ 6 Clean signature. Small fraction.

τhτe 23 ”Golden mode”.

τhτµ 23 ”Golden mode”.

To optimize sensitivity we split events into eight channels based on the tau decay

type and presence of a jet in the event.
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B. Event Selection

This analysis targets ττ events in the channel where one of the tau leptons decays

leptonically and the other one decays hadronically. This particular mode has a high

branching fraction B(ττ → lτh +ννν) ≈46% while the requirement of an isolated lep-

ton allows suppressing the QCD multi-jet backgrounds to a reasonable level without

large losses in signal efficiency.

The event selection requires presence of at least one light lepton (central electron,

CMUP or CMX muon) with pT > 20 GeV/c and at east one hadronic tau candidate

with pT > 12.5 GeV/c (for one prong tau candidates) or pT > 15 GeV/c (for three-

prong tau candidates). Both lepton and hadronic tau selections rely on fairly standard

deifnitions providing high efficiency while delivering adequate suppression of QCD

multi-jet backgrounds. After selecting the lepton candidates, a series of topology cuts

are used to reduce contamination from Drell-Yan and W+jets processes as well as

smaller diboson and tt̄ contributions. After these selections, the dominant remaining

contamination is due to the irreducible Z → ττ background. Final discrimination

between signal and Z → ττ is performed by fitting the fully reconstructed di-tau

resonance mass using the MMC technique searching for an enhancement of ditau

pairs in the region above the Z → ττ peak.

To further improve senstivity of the analysis, we define several sub-regions to

better separate events with different signal to background ratio. We define four

regions based on whether the light lepton is an electron or muon, and whether the

tau candidate is one- or three-prong. Each of the four regions is further divided into

two sub-regions based on the presence of at least one jet above a certain threshold.

Analysis of the invariant mass spectrum is separately performed in each of the regions.
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1. Selection of Electron Candidates

Electron identification and isolation allow a strong suppression of multi-jet events,

which otherwise would dominate the sample of selected events. We require presence

of at least one high quality electron candidate defined by closely following standard

electron identification for CEM electrons. We only make a small modification of the

isolation requirement: we do not apply calorimeter isolation and use track isolation

instead. Electron ID requirements are listed in Table III.

Table III. Electron ID cuts

Cut

Track Quality 3×2×5

z0<60 cm

EHAD/EEM<0.055 + 0.00045×E

E/p<2 or E>100 GeV

-3<Qe∆XCES<1.5 cm

|∆ZCES|<3 cm

CES χ2|Z<10

Lshr<0.2

d0<0.2 cm

I∆R<0.4
trk <2.5 GeV/c if τh(1 − prong)

I∆R<0.4
trk <2.0 GeV/c if τh(3 − prong)

ET>20 GeV

Conversion veto
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2. Selection of Muon Candidates

Muon identification and isolation requirements serve the same purpose as in the case

of electrons. In the events collected using the inclusive muon trigger, we require

presence of at least one high quality muon candidate. The specific selections are

listed in Table IV, which again follow standard CDF muon identification.

Table IV. Muon ID cuts

Cut

CMUP or CMX

|∆x|CMU<7 cm

|∆x|CMP<5 cm

|∆x|CMX<6 cm

Track Quality 3×2×5

d0<0.2 cm if no SVX hits, 0.02 cm if SVX hits

EEM< 2.0 + max(0.0; 0.0115(p-100)) GeV

EHAD< 6.0 + max(0.0; 0.028(p-100)) GeV

I∆R<0.4
trk <2.5 GeV/c if τh(1 − prong)

I∆R<0.4
trk <2.0 GeV/c if τh(3 − prong)

pT>20 GeV/c

Cosmic veto

3. Selection of Hadronically Decaying Tau Candidates

Once at least one high quality light lepton candidate is identified, the event is required

to have at least one high quality hadronically decaying tau candidate not overlapping
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with at least one good light lepton candidate. This is equivalent to requiring a

presence of at least one pair of high quality light lepton and hadronically decaying

tau candidates in the event. Tau identification and isolation cuts used in defining a

high quality candidate are listed in Table V

Table V. Tau ID cuts

Cut

|η|<1

Seed Track Quality 3×2×5

pτ−seed
T >6 GeV/c

dτ−seed
0 <0.2 cm

|zτ−seed
0 − zl−trk

0 |<5 cm

9<|zτ−seed
RCES

|<230 cm

N∆R<0.17
trk =1 or 3

N0.17<∆R<0.52
trk =0 (count tracks with pT>1 GeV/c)

I0.17<∆R<0.52
trk <1 GeV/c

EEM

EEM+EHAD<0.9

Ecalo

P trks>0.5

M trk<1.8 GeV/c2

0.6<Mvis
τh

(3 − prong)<2.0 GeV/c2

pvis
T (1 − prong)>12.5 GeV/c

pvis
T (3 − prong)>15 GeV/c
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4. Event Topology Cuts

Once events containing at least one pair of high quality light lepton and hadronically

decaying tau candidates are selected, we apply a set of event topology selections.

Given that the QCD multijet background is already significantly reduced at this

point, these selections are primarily designed to reject background contamination

owing to the Z → ll and W+jets processes. We reject events roughly consistent

with Z → ee or Z → µµ hypothesis and with the invariant mass close to the Z

boson mass (see Table VI). We also apply a cut on mutual orientation of the two

lepton candidates and E/T in the event (see Table VII), which is found to provide a

very strong suppression against W+jets events while having very little inefficiency for

events in signal topology (including Z → ττ events as they have a similar topology

to that of the signal events).

Table VI. Topological selections supressing Drell-Yan background (aka

“Z → ee/Z → µµ veto”).

Calorimeter based (τeτh only)

τe − τh pair 81<M calo(τe, τh)<101 GeV/c2

τe plus second cluster 76<M(τe, e)<106 GeV/c2

Second cluster: EEM
T >8 GeV, EHAD/EEM<0.12

Track based (τeτh and τµτh)

τl plus second track 66<M trk(τl, trk)<111 GeV/c2

Second track: pT>10 GeV/c, I∆R<0.4
trk <2 GeV/c
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Table VII. Topological selections suppressing W + jets background events.

Cut

∆φ(e/µ, E/T) + ∆φ(τh, E/T)< 3.5

MT (τl, E/T)<65 GeV/c2

5. Definition of the Signal Regions

Once all lepton, tau and topological selections are applied, we define eight regions ac-

cording to the flavor of the light lepton (electron or muon), the type of the hadronic

tau candidate (one or three prong), and presence of at least one jet above a cer-

tain threshold. Such categorization separates events with different signal to back-

ground ratios improving the overall sensitivity of the analysis. The jet ET threshold

(ET>30 GeV) is optimized to maximize the expected significance of the analysis using

full fitting procedure.

C. Backgrounds

Here we explain our model used to predict backgrounds.

1. Overview

This analysis searches for excess of events with a large (essentially above the Z mass)

invariant mass calculated using the leptonic and hadronic tau candidates. Background

contributions owe to the following SM processes (in the order of significance) : Z → ττ

(the main irreducible background), QCD multijets and W + jets, Z → ll, di-bosons,
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tt̄. The last three contributions are very small and have little influence on the results.

In evaluating background contributions, we rely on data driven approaches, either

directly measuring backgrounds from data or, when the simulation is expected to

be reliable, by defining scale factors between data and simulation. In the latter

case we rely on a variety of measurements performed in the control regions enriched

with events from one or more background processes (in which case we explore shape

differences).

While the signal region definition requires the two lepton candidates to have

opposite charge, events with the same electric charge provide an important control

region for estimating some of the background contributions, most importantly the

QCD multi-jet background. We therefore frequently compare the samples that only

differ by the charge product of the two lepton candidates, which we refer to “opposite

sign” (OS) events or “same sign” (SS) events. Generally, one can write the total rate

of background events for the OS and SS samples with otherwise same selections as

follows:

nos = nZ→τhτl
os + nQCD

os + nW+jets
os + nZ→ll

os + nother
os (6.1)

nss = nZ→τhτl
os + nssQCD + nW+jets

ss + nZ→ll
ss + nother

ss , (6.2)

where “other” refers to the combined sum of the “small backgrounds”. For the QCD

multi-jet backgrounds, nos(QCD) ≈ nss(QCD), although the ratio is not exactly one

to one1. Introducing nos(QCD) = (RQCD
os/ssnss(QCD), one can rewrite Eq. (6.1) using

1Various measurements at CDF and CMS suggest that there slightly more (5–
10%) opposite sign events depending on the exact selections. It is noteworthy that
simulation, e.g. Pythia, suggests a similar size asymmetry. The effect is likely asso-
ciated with pp̄ → qq̄ events in which final lepton candidates “remember” the charge
of the parent parton. Typically, tighter isolation when the entire jet fluctuates into
just a single track enhances this “memory”.
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Eq. (6.2) as:

nos = nss + nZ→τhτl
os−ss + (RQCD

os/ss − 1)nQCD
ss + nW+jets

os−ss + nZ→ll
os−ss + nother

os−ss, (6.3)

where we use notation nos−ss = nos − nss.

Formula in Eq. (6.3) serves as a basis for the background estimation schema used

in our analysis. Note that for many electroweak processes simulation predictions for

nos−ss are more robust as the difficult for simulation “fake rate” contributions leading

to the SS events are already subtracted.

We use simulation to predict the shape and the rate of the small backgrounds,

i.e. di-bosons and tt̄. Upon validation, simulation is also used to obtain shapes for

the background contributions due to Z → τhτl, W + jets and Z → ll, but we rely

on explicit comparisons of data and simulation in the control region to determine the

absolute normalization.

Because the main signal region is split into sub-regions with and without jets, in

some cases applying the above formalism directly for each sub-region can lead to large

systematic uncertainties on the backgrounds due to the limited statistics of events

in the control regions. Therefore, where appropriate, we first determine the absolute

normalizations for the inclusive (with and without jets) samples and then introduce

probabilities f0jets and f1+jet, which can be measured in data using other control

regions. One example is the measurement of f1+jet for Z → τhτl events, which can be

accurately measured using Z → ee events selected with the “equivalent” kinematical

selections.

2. Normalization of the W+jets MC sample.

To estimate nW+jets
os−ss in each of the signal sub-regions, we first determine the normal-

ization for the pairs of sub-regions with and without jets. For each of such “inclusive”
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sub-regions, we define control regions dominated by W+jets events with very small

other background contributions. Selection cuts for these four control regions (from

two light lepton types and two choices for the number of prongs in the hadronic tau

candidate) are listed in Table VIII. Note that compared to the signal region, the con-

trol region uses the reverted δφ requirement (which depends on event kinematics and

not on jet fragmentation details, and therefore is reliably predicted by simulation),

while other selections are highly efficient for W+jet events therefore not introducing

any unexpected biases.

Table VIII. W + jets normalization region

Cut

∆φ(e/µ, E/T) + ∆φ(τh, E/T)> 3.5

E/T>30 GeV

MT (τl, E/T)>40 GeV/c2

Note that the rate of W+jets events is not expected to be perfectly predicted

by the simulation because this rate depends on the probability for the recoil jet to

be misidentified as either one or three prong hadronic tau candidate, which are due

to rare fluctuations in jet fragmentation. Similarly, the ratio of events with one and

three-prong tau candidates is not to be trusted as the degree to which simulation can

be incorrect in evaluating the probabilities of such fluctations can be (and porobably

is) different. One also does not expect MC to perfectly model the OS/SS ratio,

as those sub-samples have different fractions of quark and gluon recoil jets, which

fragment differently. To avoid over-relying on simulation, we separately normalize
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opposite sign and same sign events using scale factors KW+jets
os and KW+jets

ss :

KW+jets
os(ss) =

ndata,W+jets
os(ss)

nMC,W+jets
os(ss)

(6.4)

measured in the control regions for OS and SS events and corrected for (small) con-

tamination from other backgrounds:

ndata,W+jets
os(ss) = nos(ss) − nZ→ll

os(ss) − nother
os(ss). (6.5)

The scale factor is defined relative to the simulation prediction for nMC
os/ss(W + jets),

which includes normalization to luminosity and the NLO K-factor of 1.4.

Figures 24 and 25 show hadronic tau candidate pT distribution for each of the

sub-regions with the normalization correction applied. Table IX shows normalization

factors obtained for each channel relative to the W + jets MC predictions. As we

mentioned earlier, these normalization factors are expected to be different due to

the several separate effects that are likely not described well by for the simulation.

However, one can use these normalization scale factors to construct “invariants” where

possible “mistakes” by the simulation would cancel out. For example, the rato of

scale factors for one and three-prong OS events should be the same for samples in the

electron and muon channel. the same should be true for the SS events. Table X shows

that these ratios (only the numbers in the same column are to be compared) agree

within the uncertainties, which serves as a cross-check for the procedure. Table XI

demonstrates further validation of the normalization using other similar invariants.

a. Jet Counting Scale Factors

To estimate the fraction of the events falling into the 0-jet and 1+-jet sub-regions,

we note that these fractions are determined by the probability of producing an extra
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Table IX. K(W + jets) ± σK(W+jets)(ǫK(W+jets)(%)), Njet>=0

τhτe τhτµ

τh(1-prong) OS 0.590 ± 0.034 (5.8) 0.393 ± 0.027 (6.9)

τh(1-prong) SS 0.893 ± 0.010 (10.7) 0.530 ± 0.075 (14.2)

OS/SS 0.66 ± 0.08 (12) 0.74 ± 0.12 (16)

τh(3-prong) OS 0.668 ± 0.036 (5.4) 0.512 ± 0.033 (6.4)

τh(3-prong) SS 0.667 ± 0.057 (8.6) 0.481 ± 0.051 (10.6)

OS/SS 1.00 ± 0.08 (10) 1.07 ± 0.13 (12)

recoil jet in an event with a W and a tau-like jet. To measure that probability with

acceptable accuracy, we define another control region for W + jet events, which is

different from the main W + jet control region only by relaxing the isolation require-

ments on the τh side. This allows increasing the statistics of the data sample and the

measured f ’s are listed in Table XII.

b. Final Scale Factors and the Uncertainties

Table XIII shows the uncertainty on the normalization of the W + jet background

contribution used in setting the final limits. The shape of the W + jet events is

taken from the simulation with relaxed cuts on the isolation of the hadronic tau leg

to increase the statistics.
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Table X. Validation of the normalization factors. There should be agreement between

numbers within each column.

l Kl−1prong
os

Kl−3prong
os

Kl−1prong
ss

Kl−3prong
ss

e 0.817892 ± 0.0730119 (8.92684) 1.17157 ± 0.177176 (15.123)

µ 0.665597 ± 0.0711544 (10.6903) 1.10688 ± 0.219597 (19.8393)

3. Z → ll

With the background estimation schema used in our analysis, the Drell-Yan events

present a fairly small background contribution. There are two categories of Z → ee

and Z → µµ events passing the selection requirements of this analysis. The first one

is due to events Z +(jet→ “τ ′′h ), where one of the leptons in ee/µµ pair becomes the

τeµ candidate while the recoil jet fakes a τh candidate. The second lepton in the pair

is typically lost as otherwise the event would not pass the Z → ee/Z → µµ veto. Due

to smaller acceptance of the muon system, muons fail reconstruction more frequently

than electrons and the relative fraction of events for this category is higher for the

Z → µµ samples. Note that because jet fakes have no charge correlation with the

charge of the surviving lepton, the nos−ss quantity used in our background estimation

schema vanishes for this category of events. This category of background events is

therefore automatically subtracted.

The second type of Z → ee and Z → µµ events owes to events where one of the

leptons is misidentified as a hadronic tau candidate, e/µ→ τh, either due to an overlap

with another particle (e.g. a photon from the underlying event), an abnormally large
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Table XI. Validation of the normalization factors.

X = (sign, n-prong)
Ke

X

Kµ
X

os, 1-prong 1.55398 ± 0.161072 (10.3651)

ss, 1-prong 1.65606 ± 0.323628 (19.542)

os, 3-prong 1.26462 ± 0.117641 (9.30246)

ss, 3-prong 1.56463 ± 0.242599 (15.5052)

calorimeter energy deposition (for the muon case) or a large leakage into the hadron

calorimeter (for an electron). Lepton and hadronic tau candidate in these events are

typiclaly oppositely charged. We use simulation predictions corrected with a scale

factor measured in a control region defined by inverting the Z veto requirement.

For the electron and muon sub-regions, we additionally invert the requirement on the

electromagnetic fraction of the selected hadronic tau candidate and the calorimeter to

track energy ratio, respectively. Both control regions have high purity of Z → ee and

Z → µµ events as illustrated in Fig. 26 showing the invariant mass of the l− τh pair.

Note that the lepton leg in these events that fakes a τh candidate is reconstructed

using hadronic tau reconstruction sequence. in calculating the invariant mass, we use

the 4-momenta of the tracks associated with the tau candidate to reconstruct the µµ

invariant mass, for the ee case we use the 4-momentum of the calorimeter cluster

associated with the tau candidate. The latter does not include any of the standard

electron energy corrections leading to a small difference in resolution in data and

simulation. This is expected and has no effect on the analysis. Table XIV shows
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Table XII. Fraction of events in the =0-jet and >0-jet channels measured from

W + jets data.

channel F=0 F>0

τeτh(1-prong) OS 0.93384 ± 0.0370581 (3.97) 0.0661597 ± 0.00732394 (11.07)
τeτh(1-prong) SS 0.909091 ± 0.0585655 (6.44) 0.0909091 ± 0.0139998 (15.40)

τeτh(3-prong) OS 0.926934 ± 0.0357697 (3.86) 0.0730659 ± 0.00749424 (10.26)
τeτh(3-prong) SS 0.924183 ± 0.0482138 (5.22) 0.075817 ± 0.0103258 (13.62)

τµτh(1-prong) OS 0.926279 ± 0.0393383 (4.25) 0.0737207 ± 0.00828564 (11.24)
τµτh(1-prong) SS 0.920705 ± 0.0624112 (6.78) 0.0792952 ± 0.0137298 (17.31)

τµτh(3-prong) OS 0.931571 ± 0.0374061 (4.02) 0.0684292 ± 0.00754003 (11.02)
τµτh(3-prong) SS 0.924266 ± 0.0524299 (5.67) 0.0757342 ± 0.0112214 (14.82)

normalization scale factors obtained for the inclusive jet Z → ll samples.

a. Jet Counting Scale Factors

To obtain the normalization scale corrections accounting for differences in data in

simulation for the distribution of the inclusive events between the sub-regions with

and without jets, we use the data from the same Z → ee control region to measure

the fraction of events with and without jets, f0 jets and f1+ jets (see Table XV and

Fig. 27). The same value (as the probability of observing a jet in Z events does

not depend on the channel) is then used for each of the four channels as the scale

correction for the normalization of events in pairs of the jet sub-regions.

b. Final Scale Factors and the Uncertainties

Table XVI shows the final scale factors and the associated uncertainties used in limit

setting.
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Table XIII. Final uncertainties on the total normalizations of the W + jets add-on

background.

= 0-jet τhτe τhτµ

τh(1-prong) 12 13

τh(3-prong) 14 14

> 0-jet τhτe τhτµ

τh(1-prong) 29 22

τh(3-prong) 25 26

4. Estimation of the Z → τhτl and QCD Multi-Jet Background Contaminations

To first order, QCD multi-jet contribution can be estmated using the rate and the

shape of SS events in data. The more accurate calculation requires correcting the

normalization to take into account that the ratio RQCD
os/ss is slightly deviated from

unity. In the case of the inclusive Z → ττ events, the shapes of various distributions

are known to be well described by the simulation, but the overall normalization is

not known due to fairly significant trigger inefficiencies and also smaller differences

in the isolation efficiencies between data and simulation. With all other backgrounds

accounted for, that leaves two unknown normalization scale factors (times the number

of signal regions). To determine them, we use the distribution of the MMC-based

invariant mass Mττ shown in Fig. 28 for each of the four regions (eτh or µτh for one

and 3-prong taus). While the contributions from Z → ττ and QCD multi-jet events
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Table XIV. Z → ll normalization factors with the absolute and relative uncertainties

for the inclusive Njet >=0 channel, K(Z → ll) ± σK(Z→ll)(ǫK(Z→ll),%)

ee µµ

τh(1-prong) 0.880 ± 0.005 (0.5) 0.887 ± 0.033 (3.7)

τh(3-prong) 0.763 ± 0.024 (3.1) N/A

Table XV. Fraction of events in the = 0-jet and > 0-jet channels measured from

Z → ee data.

F=0 F>0

0.983147 ± 0.00440547 (0.448099) 0.0168526 ± 0.000413018 (2.45076)

have been scaled in the plots to obtain reasonable agreement with the data, it is clear

that the shapes of the two remaining backgrounds are very different, allowing one to

fit this distribution for the two normalization scale factors. Given the apparently very

good agreement of the data and expectations, an equivalent but simpler method is to

divide the entire distribution into two sub-regions with 65<M(ττ)<100 GeV/c2 and

0<M(ττ)<65 GeV/c2, dominated by Z → τhτl and multi-jet events, respectively. We

then count events in each of the sub-regions, and write down an equation similar to
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Table XVI. Final uncertainties on the total normalizations of the Z → ll background.

= 0-jet ee µµ

e/µ→ τh(1-prong) 0.7 3.7

e/µ→ τh(3-prong) 3.1 N/A

> 0-jet ee µµ

e/µ→ τh(1-prong) 2.5 4.4

e/µ→ τh(3-prong) 4.0 N/A

Eq. (6.1 for each sub-regions.Then we solve the system of two equations for K(Z →

τhτl) and RQCD
os/ss , using a simple iterative procedure. Results are shown in Tables XVII

and XVIII. Note that there is an excellent agreement between the one- and three-

prong sub-channels. This is expected as the differences between data and simulation

are driven by the effects related to the lepton leg. While we quote all four numbers,

based on a very good agreement between electrons or muon channels we use two

factors obtained by weiging the scale factors with one and three prong tau candidates

and further reduce the uncertainty on Z → ττ scale.

As for potential concerns over the possible Higgs signal leaking into the region

below M(ττ) = 100 GeV/c2 (one can see that this indeed happens in Fig. 28),

one should note that even for the least populous channel, the number of events in

the 65<M(ττ)<100 GeV/c2 region is of the order of a thousand events. Therefore,

affecting the Z → ττ scale at the level of 1 sigma would require about 30 Higgs events

withM(ττ) < 100 GeV/c2. In this case, the region aboveM(ττ) < 100 GeV/c2 would
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have a very strong enhancement of Higgs events over the (unchanged shape and 3%

increased scale) Z → ττ background, leading to only a slight underestimation of the

Higgs signal significance. For Higgs cross-sections of the order of the SM expectations,

one expects no visible effects on the limit.

Table XVII. Z → ττ normalization factors with the absolute and rel-

ative uncertainties for the inclusive Njet >=0 channel,

K(Z → τhτl) ± σK(Z→τhτl)(ǫK(Z→τhτl),%)

τhτe τhτµ

τh(1-prong) 0.867 ± 0.042 (4.8) 0.629 ± 0.028 (4.5)

τh(3-prong) 0.801 ± 0.057 (7.1) 0.639 ± 0.034 (5.4)

1- and 3-prong 0.844 ± 0.034 (4.0) 0.633 ± 0.022 (3.5)

a. Jet Counting Scale Factors

To obtain the normalization scale corrections accounting for differences in data in

simulation for the distribution of the inclusive events between the sub-regions with

and without jets, we use the data from the same Z → ee control region to measure

the fraction of events with and without jets, f0 jets and f1+ jets. The same value (as

the probability of observing a jet in Z events does not depent on the channel or the

number of prongs) is then used for each of the four channels as the scale correction

for the normalization of events in pairs of the jet sub-regions.

Because we re-calculate the QCD contribution on the fly for each sub-region, we
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Table XVIII. RQCD
os/ss factors with the absolute and relative uncertainties for the inclu-

sive Njet >=0 channel.

τhτe τhτµ

τh(1-prong) 1.10 ± 0.05 (4.5) 1.40 ± 0.18 (12.9)

τh(3-prong) 0.97 ± 0.10 (10.3) 0.93± 0.10 (10.8)

only need to measure scales f0 jets and f1+ jets = 1 − f0 jets only for Z → ττ events.

Given that such measurement in a super clean sample of Z → ττ events will be limited

by statistics, the simplest approach is to measure the efficiency of the jet requirement

in Z → ee events. One only has to ensure that the topology of selected Z → ee

events is similar to that of the selected Z → ττ events to avoid biases. Because

signal region selections are highly efficient for Z → ττ events, the distribution for the

number of jets should come out the same as for “normal” Z → ee events as long as

no peculiar cuts are applied and lepton acceptance ranges are similar. We therefore

select Z → ee events in the same way as in the Sec.4.3 (reconstructing one of the

electrons as a tau candidate ensures that the acceptance coverage in η is exactly the

same) except that we drop the topology cuts designed to reject W+jets (Table VII)

because applying such cuts to Z → ee events signifcantly modifies the topology of the

“normal” Z → ee events. This is because E/T-related requirements, when applied to

Z → ee enhance selection of events with jets (there is no true E/T in Z → ee events,

but experimentally measurable imbalance can come from a mismeasured jet). In the

case of Z → ττ events, the same selections are not modifying the topology of the
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events because of true E/T present in these events. As a quantitative proof of these

observations, we measure f ’s in thus selected Z → ee and Z → ττ simulated events

and observe a good agreement (see Table XIX and Fig. 29). We also verified that

W+jets rejection cuts applied to Z → ττ MC do not change jets distribution (see

Fig. 30). Small difference in f ’s between Z → ee and Z → ττ is due to higher full

pT of the leptons in Z → ττ selection. Only visible decay products are reconstructed

for tau leptons and the same cuts on visible pT applied to Z → ττ and Z → ee

on average select events with higher boost of the Z in the former case. Thus, the

probability to have a jet in the event is slightly higher for Z → ττ events. We rely on

MC to correct for this effect and calculate f ’s as follows: f = fZ→ee(DATA) · fZ→ττ(MC)

fZ→ee(MC) .

Once all these checks are done, we measure the fraction f0 jets, the results are

shown in Table XIX.

Table XIX. Fraction of events in the =0-jet and >0-jet channels used for the Z → ττ

background.

F=0 F>0

Data Z → ee 0.958768 ± 0.00406156 (0.423623) 0.0412319 ± 0.000614094 (1.48937)
MC Z → ee 0.958258 ± 0.00542452 (0.566081) 0.0417425 ± 0.000825761 (1.97823)
MC Z → ττ 0.956273 ± 0.00839393 (0.877775) 0.0437272 ± 0.00131108 (2.99832)

Final 0.956782 ± 0.0107841(0.0112712) 0.0431923 ± 0.00167959(0.0388864)

b. Final Scale Factors and the Uncertainties

We obtain the final scale factors for Z → ττ as a product of the “inclusive” scale

factor K for that channel times the measured fraction of events with and without
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extra jets. Final normalization factors are shown in Table XX.

Table XX. Final uncertainties on the total normalizations of the Z → ττ background.

= 0-jet τhτe τhτµ

τh(1- or 3-prong) 4.18 3.65

> 0-jet τhτe τhτµ

τh(1- or 3-prong) 5.60 5.22

5. Shape of the QCD Multi-Jet Background

Only small fraction of QCD multi-jet events enter our signal regionMττ > 100 GeV/c2.

While low background contribution is favorable for better sensitivity in a simple count-

ing experiment, low statics of the QCD events causes large uncertainties on the shape.

The shape of the MMC reconstructed mass for the QCD bakcground does not depend

on the isolation requirements on hadronic tau or lepton. Therefore we construct a

region enriched with the background coming from QCD events by modifying isolation

requirments as shown in Table XXI. While relaxed isolation on the tau side allows for

more jet → τh fakes, the anti-isolation requirement on the lepton side ensures that

other backgrounds (mostly W + jets) are very low. We fit Mττ distribution for SS

events with exponential and use this fit in the signal region. Figures 31 and 32 show

fits for all eight channels.
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Table XXI. Isolation requirements for the QCD enriched sample.

Cut

I0.17<∆R<0.52
trk (τh)<8 GeV/c

I∆R<0.4
trk (l)>1 GeV/c
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Fig. 24. Transverse momentum of hadronically decaying tau leptons, pT (τ). W+jets

Opposite Sign events. Left: electron channel, right: muon channel. Top:

1-prong taus, bottom: 3-prong taus.
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Fig. 25. Transverse momentum of hadronically decaying tau leptons, pT (τ). W+jets

Same Sign events. Left: electron channel, right: muon channel. Top: 1-prong

taus, bottom: 3-prong taus.
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Fig. 26. Z → ee and Z → µµ events after normalization. Left: e → τh(1-prong).

Middle: e→ τh(3-prong). Right: µ→ τh(1-prong).
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Fig. 28. MMC-based invariant mass distribution of the ττ system for M(ττ) < 100
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Fig. 29. Jet count histogram. Z → ee simulation is compared to data. No W+jets
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Fig. 32. Fit of the QCD multi-jet Mττ shape distribution using SS events in the QCD

enriched sample. > 0jet channels. Left: electrons, right muons. Top: 1-prong,

bottom: 3-prong.
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D. Validation of the Background Prediction: Kinematic Distributions and Event

Yield

We first verify that our prediction for the distributions of various kinematic parame-

ters (pT (τh), pT (l), E/T, etc.) agrees with the observed data. We than perform event

counting in the control region (Mττ<100 GeV/c2). By comparing the number of

predicted background events and the number of events in data we ensure that our

background model is in good agreement with data in the region where no significant

contribution from the signal is expected.

1. Kinematic Distributions

Figures 33 - 56 show kinematic distributions for each channel demonstrating good

agreement between data and the background prediction.
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Fig. 33. Transverse momenum of hadronically decaying taus, pT (τ). Events with

Njet=0. Data (points) compared to the background prediction. Left: electron

channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 34. Transverse momentum of leptonically decaying taus, pT (l). Events with

Njet=0. Data (points) compared to the background prediction. Left: electron

channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 35. Transverse missing energy, E/T. Events with Njet=0. Data (points) compared

to the background prediction. Left: electron channel, right: muon channel.

Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 36. Transverse mass MT (l, E/T). Events with Njet=0. Data (points) compared to

the background prediction. Left: electron channel, right: muon channel. Top:

1-prong taus, bottom: 3-prong taus.
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Fig. 37. ∆φ(l, τ). Events with Njet=0. Data (points) compared to the background

prediction. Left: electron channel, right: muon channel. Top: 1-prong taus,

bottom: 3-prong taus.
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Fig. 38. ∆φ(l, E/T). Events with Njet=0 Left: electron channel, right: muon channel.

Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 39. ∆φ(τ, E/T). Events with Njet=0. Left: electron channel, right: muon channel.

Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 40. ∆φ(l, τ) + ∆φ(τ, E/T). Events with Njet=0. Left: electron channel, right:

muon channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 41. θ(l) + θ(τ) − π. Events with Njet=0. Left: electron channel, right: muon

channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 42. pT (l) − pT (τ). Events with Njet=0. Left: electron channel, right: muon

channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 43. p-value. Events with Njet=0. Left: electron channel, right: muon channel.

Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 44. Invariant mass of hadronically decaying taus, M(τ). Events with Njet=0.

Left: electron channel, right: muon channel. Top: 1-prong taus, bottom:

3-prong taus.
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Fig. 45. Transverse momenum of hadronically decaying taus, pT (τ). Events with

Njet>0. Data (points) compared to the background prediction. Left: electron

channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 46. Transverse momentum of leptonically decaying taus, pT (l). Events with

Njet>0. Data (points) compared to the background prediction. Left: electron

channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 47. Transverse missing energy, E/T. Events with Njet>0. Data (points) compared

to the background prediction. Left: electron channel, right: muon channel.

Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 48. Transverse mass MT (l, E/T). Events with Njet>0. Data (points) compared to

the background prediction. Left: electron channel, right: muon channel. Top:

1-prong taus, bottom: 3-prong taus.
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Fig. 49. ∆φ(l, τ). Events with Njet>0. Data (points) compared to the background

prediction. Left: electron channel, right: muon channel. Top: 1-prong taus,

bottom: 3-prong taus.
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Fig. 50. ∆φ(l, E/T). Events with Njet>0 Left: electron channel, right: muon channel.

Top: 1-prong taus, bottom: 3-prong taus.

2. Event Yield in the Control Region

We estimate the number of events in the control region based on our background

model described in the previous section. The number of the signal events is obtained

from the simulation using production cross sections and ττ decay branching ratio

reported in [37] and summarized in Table XXII.

The distribution for Mττ in the control region is shown in Fig. 57-58. In Ta-

bles XXIII-XXX we report the number of expected and observed events for each

channel in the control region.
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Fig. 51. ∆φ(τ, E/T). Events with Njet>0. Left: electron channel, right: muon channel.

Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 52. ∆φ(l, τ) + ∆φ(τ, E/T). Events with Njet>0. Left: electron channel, right:

muon channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 53. θ(l) + θ(τ) − π. Events with Njet>0. Left: electron channel, right: muon

channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 54. pT (l) − pT (τ). Events with Njet>0. Left: electron channel, right: muon

channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 55. p-value. Events with Njet>0. Left: electron channel, right: muon channel.

Top: 1-prong taus, bottom: 3-prong taus.

2
), GeV/cτM(

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 E

ve
nt

s

0

20

40

60

80

100

2
), GeV/cτM(

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 E

ve
nt

s

0

20

40

60

80

100

(1-prong), >0-jethτ eτ →    H 
-1

CDF Run II Preliminary    L = 7.8 fb

Data

lτ hτ →Z 

hτ →jet 

µµ ee/→Z 

Add-On W+jets

tdi-bosons and t

lτ lτ →Z 

2
), GeV/cτM(

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 E

ve
nt

s

0

10

20

30

40

50

60

2
), GeV/cτM(

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 E

ve
nt

s

0

10

20

30

40

50

60

(1-prong), >0-jethτ µτ →    H 
-1

CDF Run II Preliminary    L = 7.8 fb

Data

lτ hτ →Z 

hτ →jet 

µµ ee/→Z 

Add-On W+jets

tdi-bosons and t

lτ lτ →Z 

2
), GeV/cτM(

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 E

ve
nt

s

0

5

10

15

20

25

30

35

2
), GeV/cτM(

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 E

ve
nt

s

0

5

10

15

20

25

30

35

(3-prong), >0-jethτ eτ →    H 
-1

CDF Run II Preliminary    L = 7.8 fb

Data

lτ hτ →Z 

hτ →jet 

µµ ee/→Z 

Add-On W+jets

tdi-bosons and t

lτ lτ →Z 

2
), GeV/cτM(

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 E

ve
nt

s

0

2

4

6

8

10

12

14

16

2
), GeV/cτM(

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 E

ve
nt

s

0

2

4

6

8

10

12

14

16

(3-prong), >0-jethτ µτ →    H 
-1

CDF Run II Preliminary    L = 7.8 fb

Data

lτ hτ →Z 

hτ →jet 

µµ ee/→Z 

Add-On W+jets

tdi-bosons and t

lτ lτ →Z 

Fig. 56. Invariant mass of hadronically decaying taus, M(τ). Events with Njet>0.

Left: electron channel, right: muon channel. Top: 1-prong taus, bottom:

3-prong taus.
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Table XXII. Higgs boson production cross-section and ττ decay branching ratio.

MH ggH WH ZH VBF BR(%)

115 1215.9 174.50 103.9 78.6 7.288

120 1072.3 150.10 90.2 72.7 6.789

130 842.9 112.00 68.5 62.1 5.305

140 670.6 84.60 52.7 53.2 3.472

150 539.1 64.40 40.8 45.8 1.778
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Fig. 57. Di-tau invariant mass, Mττ . Events with Njet=0. Control region. Left: elec-

tron channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 58. Di-tau invariant mass, Mττ . Events with Njet>0. Control region. Left: elec-

tron channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong taus.

Table XXIII. Event yield in the control region Mττ <100 GeV: τeτh(1-prong), Njet >0

Background source Events (uncertainty, %)

Z → τhτl 79.4 ± 4.45 (5.6)
fakes from SS 74.8 ± 9.32 (12.5)
add-on W+jets 4.06 ± 1.21 (29.8)
Z → ll 1.3 ± 0.0325 (2.5)
di-bosons 0.299 ± 0.0299 (10)
tt̄ 2.2 ± 0.22 (10)
Z → τlτl 0.0551 ± 0.00338 (6.13)

Total background 161 ± 10.4 (6.47)

OS data 170

Signal expectations
MH ggH WH ZH VBF

115 0.0654 0.0504 0.0335 0.0266 0.176
120 0.0526 0.0334 0.0189 0.0198 0.125
130 0.021 0.0169 0.00841 0.00979 0.0561
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Table XXIV. Event yield in the control region Mττ <100 GeV: τeτh(1-prong), Njet =0

Background source Events (uncertainty, %)

Z → τhτl 1894 ± 79.2 (4.18)
fakes from SS 1965 ± 102 (5.17)
add-on W+jets 72.9 ± 9.07 (12.4)
Z → ll 36.1 ± 0.242 (0.671)
di-bosons 2.63 ± 0.263 (10)
tt̄ 0.227 ± 0.0227 (10)
Z → τlτl 5.69 ± 0.241 (4.24)

Total background 3941 ± 129 (3.28)

OS data 4011

Signal expectations
MH ggH WH ZH VBF

115 0.808 0.0349 0.017 0.0112 0.871
120 0.619 0.0275 0.0122 0.00891 0.668
130 0.341 0.0146 0.00642 0.0043 0.366

Table XXV. Event yield in the control region Mττ <100 GeV: τeτh(3-prong), Njet >0

Background source Events (uncertainty, %)

Z → τhτl 44.3 ± 2.48 (5.6)
fakes from SS 56 ± 7.83 (14)
add-on W+jets 6.96 ± 1.74 (25)
Z → ll 0.128 ± 0.00505 (3.95)
di-bosons 0.144 ± 0.0144 (10)
tt̄ 0.98 ± 0.098 (10)
Z → τlτl 0

Total background 108 ± 8.39 (7.74)

OS data 123

Signal expectations
MH ggH WH ZH VBF

115 0.0314 0.0241 0.0137 0.0133 0.0824
120 0.0222 0.0158 0.00871 0.00965 0.0563
130 0.0128 0.0073 0.0039 0.0045 0.0285
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Table XXVI. Event yield in the control region Mττ <100 GeV: τeτh(3-prong), Njet =0

Background source Events (uncertainty, %)

Z → τhτl 1071 ± 44.8 (4.18)
fakes from SS 2106 ± 97.7 (4.64)
add-on W+jets 91.1 ± 12.9 (14.1)
Z → ll 1.95 ± 0.061 (3.13)
di-bosons 1.47 ± 0.147 (10)
tt̄ 0.0978 ± 0.00978 (10)
Z → τlτl 0

Total background 3270 ± 108 (3.31)

OS data 3254

Signal expectations
MH ggH WH ZH VBF

115 0.406 0.017 0.00764 0.00563 0.436
120 0.266 0.0125 0.00509 0.00381 0.288
130 0.143 0.00624 0.00323 0.00218 0.154
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Table XXVII. Event yield in the control regionMττ <100 GeV: τµτh(1-prong), Njet >0

Background source Events (uncertainty, %)

Z → τhτl 63.9 ± 3.33 (5.22)
fakes from SS 23.4 ± 5.6 (23.9)
add-on W+jets 4.86 ± 1.05 (21.7)
Z → ll 0.613 ± 0.0272 (4.44)
di-bosons 0.245 ± 0.0245 (10)
tt̄ 1.7 ± 0.17 (10)
Z → τlτl 0.268 ± 0.0184 (6.85)

Total background 94.4 ± 6.61 (7)

OS data 107

Signal expectations
MH ggH WH ZH VBF

115 0.0467 0.0396 0.0222 0.0197 0.128
120 0.0342 0.0277 0.0152 0.0135 0.0906
130 0.0162 0.0148 0.00775 0.00716 0.0459

Table XXVIII. Event yield in the control region Mττ <100 GeV: τµτh(1-prong),

Njet =0

Background source Events (uncertainty, %)

Z → τhτl 1473 ± 53.8 (3.65)
fakes from SS 516 ± 66.4 (12.9)
add-on W+jets 63.1 ± 8.24 (13.1)
Z → ll 29.7 ± 1.11 (3.73)
di-bosons 2.14 ± 0.214 (10)
tt̄ 0.137 ± 0.0137 (10)
Z → τlτl 5.47 ± 0.286 (5.22)

Total background 2060 ± 85.9 (4.17)

OS data 2037

Signal expectations
MH ggH WH ZH VBF

115 0.594 0.0261 0.0137 0.00842 0.643
120 0.466 0.0185 0.00873 0.0064 0.5
130 0.249 0.0104 0.00489 0.00426 0.268
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Table XXIX. Event yield in the control region Mττ <100 GeV: τµτh(3-prong), Njet >0

Background source Events (uncertainty, %)

Z → τhτl 34.5 ± 1.8 (5.22)
fakes from SS 14 ± 4.02 (28.7)
add-on W+jets 5.37 ± 1.4 (26.1)
Z → ll 0.144 ± 0.0148 (10.3)
di-bosons 0.127 ± 0.0127 (10)
tt̄ 0.737 ± 0.0737 (10)
Z → τlτl 0.0103 ± 0.00119 (11.5)

Total background 54.8 ± 4.63 (8.44)

OS data 61

Signal expectations
MH ggH WH ZH VBF

115 0.0203 0.0186 0.0105 0.00871 0.0582
120 0.0169 0.0139 0.00736 0.00604 0.0442
130 0.00698 0.00667 0.00312 0.00321 0.02

Table XXX. Event yield in the control region Mττ <100 GeV: τµτh(3-prong), Njet =0

Background source Events (uncertainty, %)

Z → τhτl 821 ± 30 (3.65)
fakes from SS 405 ± 47.1 (11.6)
add-on W+jets 78.8 ± 11.3 (14.3)
Z → ll 3.15 ± 0.315 (10)
di-bosons 1.1 ± 0.11 (10)
tt̄ 0.0674 ± 0.00674 (10)
Z → τlτl 0.229 ± 0.0244 (10.7)

Total background 1306 ± 57 (4.36)

OS data 1331

Signal expectations
MH ggH WH ZH VBF

115 0.276 0.0139 0.00689 0.0041 0.301
120 0.2 0.0105 0.00489 0.00283 0.219
130 0.112 0.00447 0.00223 0.00174 0.121
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E. Event Yield in the Signal Region

After extensive cross checks of the background model in the control region we look

at the signal region. Figures 59-62 shows Mττ distribution in the signal region and

in the mass range from 0 to 200 GeV/c2. In Tables XXXI-XXXVIII we report the

number of expected and observed events for each channel in the signal region. The

number of the observed events is in agreement with background only hypothesis.
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Fig. 59. Di-tau invariant mass, Mττ . Events with Njet=0. Signal region. Left: electron

channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong taus.
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Fig. 60. Di-tau invariant mass, Mττ . Events with Njet=0. Full mass range. Left:

electron channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong

taus.
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Fig. 61. Di-tau invariant mass, Mττ . Events with Njet>0. Signal region. Left: electron

channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong taus.

Table XXXI. Event yield in the signal region Mττ >100 GeV: τeτh(1-prong), Njet >0

Background source Events (uncertainty, %)

Z → τhτl 29.2 ± 1.63 (5.6)
fakes from SS 3.35 ± 1.84 (54.8)
add-on W+jets 0.692 ± 0.181 (26.1)
Z → ll 0
di-bosons 0.113 ± 0.0113 (10)
tt̄ 0.798 ± 0.0798 (10)
Z → τlτl 0.22 ± 0.0135 (6.13)

Total background 34.3 ± 2.47 (7.18)

OS data 27

Signal expectations
MH ggH WH ZH VBF

115 0.139 0.0871 0.0481 0.0629 0.337
120 0.125 0.0769 0.0457 0.0597 0.307
130 0.0926 0.0477 0.0299 0.0417 0.212



130

2
), GeV/cττM(

0 20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f 
E

ve
n

ts

0

10

20

30

40

50

2
), GeV/cττM(

0 20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f 
E

ve
n

ts

0

10

20

30

40

50

(1-prong), >0-jethτ eτ →    H 
-1

CDF Run II Preliminary    L = 7.8 fb

Data
lτ hτ →Z 

hτ →jet 
µµ ee/→Z 

Add-On W+jets
tdi-bosons and t

lτ lτ →Z 
H(115)  x 500
H(120)  x 500
H(130)  x 500

2
), GeV/cττM(

0 20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f 
E

ve
n

ts

0

5

10

15

20

25

30

35

40

2
), GeV/cττM(

0 20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f 
E

ve
n

ts

0

5

10

15

20

25

30

35

40

(1-prong), >0-jethτ µτ →    H 
-1

CDF Run II Preliminary    L = 7.8 fb

Data
lτ hτ →Z 

hτ →jet 
µµ ee/→Z 

Add-On W+jets
tdi-bosons and t

lτ lτ →Z 
H(115)  x 500
H(120)  x 500
H(130)  x 500

2
), GeV/cττM(

0 20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f 
E

ve
n

ts

0

5

10

15

20

25

30

35

2
), GeV/cττM(

0 20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f 
E

ve
n

ts

0

5

10

15

20

25

30

35

(3-prong), >0-jethτ eτ →    H 
-1

CDF Run II Preliminary    L = 7.8 fb

Data
lτ hτ →Z 

hτ →jet 
µµ ee/→Z 

Add-On W+jets
tdi-bosons and t

lτ lτ →Z 
H(115)  x 500
H(120)  x 500
H(130)  x 500

2
), GeV/cττM(

0 20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f 
E

ve
n

ts

0

5

10

15

20

25

2
), GeV/cττM(

0 20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f 
E

ve
n

ts

0

5

10

15

20

25

(3-prong), >0-jethτ µτ →    H 
-1

CDF Run II Preliminary    L = 7.8 fb

Data
lτ hτ →Z 

hτ →jet 
µµ ee/→Z 

Add-On W+jets
tdi-bosons and t

lτ lτ →Z 
H(115)  x 500
H(120)  x 500
H(130)  x 500

Fig. 62. Di-tau invariant mass, Mττ . Events with Njet>0. Full mass range. Left:

electron channel, right: muon channel. Top: 1-prong taus, bottom: 3-prong

taus.
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Table XXXII. Event yield in the signal region Mττ >100 GeV: τeτh(1-prong), Njet =0

Background source Events (uncertainty, %)

Z → τhτl 512 ± 21.4 (4.18)
fakes from SS 45.8 ± 7.09 (15.5)
add-on W+jets 11.9 ± 1.37 (11.4)
Z → ll 28.7 ± 0.193 (0.671)
di-bosons 0.651 ± 0.0651 (10)
tt̄ 0.0634 ± 0.00634 (10)
Z → τlτl 0.407 ± 0.0172 (4.24)

Total background 570 ± 22.6 (3.96)

OS data 606

Signal expectations
MH ggH WH ZH VBF

115 0.53 0.0222 0.00868 0.0144 0.576
120 0.5 0.0186 0.00805 0.0133 0.54
130 0.314 0.011 0.00555 0.00885 0.339

Table XXXIII. Event yield in the signal region Mττ >100 GeV: τeτh(3-prong), Njet >0

Background source Events (uncertainty, %)

Z → τhτl 12.8 ± 0.715 (5.6)
fakes from SS 6.76 ± 2.61 (38.7)
add-on W+jets 0.736 ± 0.152 (20.6)
Z → ll 0
di-bosons 0.0876 ± 0.00876 (10)
tt̄ 0.732 ± 0.0732 (10)
Z → τlτl 0

Total background 21.1 ± 2.72 (12.9)

OS data 17

Signal expectations
MH ggH WH ZH VBF

115 0.0941 0.0513 0.0331 0.0386 0.217
120 0.0873 0.044 0.029 0.0397 0.2
130 0.0665 0.0329 0.0214 0.0298 0.151
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Table XXXIV. Event yield in the signal region Mττ >100 GeV: τeτh(3-prong), Njet =0

Background source Events (uncertainty, %)

Z → τhτl 196 ± 8.19 (4.18)
fakes from SS 34.8 ± 6.07 (17.4)
add-on W+jets 9.55 ± 1.12 (11.7)
Z → ll 5.51 ± 0.173 (3.13)
di-bosons 0.804 ± 0.0804 (10)
tt̄ 0.037 ± 0.0037 (10)
Z → τlτl 0

Total background 241 ± 10.3 (4.26)

OS data 241

Signal expectations
MH ggH WH ZH VBF

115 0.449 0.0191 0.00701 0.00874 0.484
120 0.462 0.0155 0.00637 0.00974 0.494
130 0.346 0.0118 0.00542 0.0079 0.371
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Table XXXV. Event yield in the signal region Mττ >100 GeV: τµτh(1-prong), Njet >0

Background source Events (uncertainty, %)

Z → τhτl 21.5 ± 1.12 (5.22)
fakes from SS 1.46 ± 1.22 (83.6)
add-on W+jets 0.595 ± 0.156 (26.3)
Z → ll 0.311 ± 0.0138 (4.44)
di-bosons 0.11 ± 0.011 (10)
tt̄ 0.735 ± 0.0735 (10)
Z → τlτl 0

Total background 24.4 ± 1.67 (6.84)

OS data 21

Signal expectations
MH ggH WH ZH VBF

115 0.117 0.0669 0.0405 0.0483 0.273
120 0.111 0.0605 0.0348 0.0459 0.252
130 0.081 0.0386 0.0224 0.0315 0.173

Table XXXVI. Event yield in the signal region Mττ >100 GeV: τµτh(1-prong), Njet =0

Background source Events (uncertainty, %)

Z → τhτl 417 ± 15.2 (3.65)
fakes from SS 21.9 ± 5.38 (24.5)
add-on W+jets 7.85 ± 1.23 (15.7)
Z → ll 24.2 ± 0.902 (3.73)
di-bosons 0.638 ± 0.0638 (10)
tt̄ 0.0555 ± 0.00555 (10)
Z → τlτl 0.476 ± 0.0248 (5.22)

Total background 448 ± 16.2 (3.62)

OS data 444

Signal expectations
MH ggH WH ZH VBF

115 0.431 0.0171 0.00777 0.0105 0.466
120 0.4 0.016 0.00684 0.00961 0.432
130 0.3 0.00874 0.00471 0.00697 0.32
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Table XXXVII. Event yield in the signal region Mττ >100 GeV: τµτh(3-prong),

Njet >0

Background source Events (uncertainty, %)

Z → τhτl 9.8 ± 0.511 (5.22)
fakes from SS 0.934 ± 0.972 (104)
add-on W+jets 0.767 ± 0.228 (29.7)
Z → ll 0 ± 0.0216 (10.3)
di-bosons 0.093 ± 0.0093 (10)
tt̄ 0.511 ± 0.0511 (10)
Z → τlτl 0

Total background 12.1 ± 1.12 (9.27)

OS data 10

Signal expectations
MH ggH WH ZH VBF

115 0.0714 0.0385 0.0236 0.0312 0.165
120 0.0749 0.0376 0.0217 0.0299 0.164
130 0.0507 0.0251 0.0153 0.022 0.113

Table XXXVIII. Event yield in the signal region Mττ >100 GeV: τµτh(3-prong),

Njet =0

Background source Events (uncertainty, %)

Z → τhτl 169 ± 6.16 (3.65)
fakes from SS 6.54 ± 2.65 (40.5)
add-on W+jets 11.4 ± 1.83 (16)
Z → ll 6.82 ± 0.683 (10)
di-bosons 0.652 ± 0.0652 (10)
tt̄ 0.0713 ± 0.00713 (10)
Z → τlτl 0

Total background 187 ± 6.98 (3.73)

OS data 190

Signal expectations
MH ggH WH ZH VBF

115 0.355 0.0139 0.00604 0.00799 0.383
120 0.342 0.0127 0.00607 0.00741 0.368
130 0.265 0.00853 0.00406 0.00628 0.284
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F. Systematics Uncertainties

For the backgrounds coming from Z → ττ , W + jets and Z → ll we derive normal-

ization directly from data. Therefore we use uncertainties on the normalization for

each channel calculated in Sec.4 as rate systematics uncertainties (see Tables XIII,

XVI, XX). Systematics for the QCD background is taken into account as bin to bin

uncertainties from the histogram which correspond QCD background distribution in

the signal region. The sources for the rate systematics uncertainties and their values

for the tt̄ and di-boson backgrounds are given in Table XXXIX. Rate systematics for

the signal is shown in Table XL.

Table XXXIX. Systematic uncertainties for the tt̄ and di-boson backgrounds.

Source tt̄ di-boson

JES (= 0-jet) -17 -13

JES (> 0-jet) -7 8

cross-section 10.0 10.0

PDF model 1.0 1.0

The shape systematics is driven by the Jet Energy Scale (JES). We compare the

shapes of the Mττ distributions for the Z → ττ , ggH, WH, ZH and VBF for the

nominal value of JES and after applying ±1σ variation in JES. The shape variation

is within statistical uncertainties in each bin of the distributions and have very little

effect on the final limits.
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Table XL. Systematic uncertainties for the signal.

Source ggH WH ZH VBF

Luminosity 5.9 5.9 5.9 5.9

JES (=0-jet) -3.3 -21 -26 -36

JES (>0-jet) 22 10 8 10

σ (=0-jet) 10 5.0 5.0 10.0

σ (>0-jet) 20 5.0 5.0 10.0

PDF model 4.9 1.2 0.9 2.2

ISR/FSR (=0-jet) -6.3 -2.5 1.4 -5.2

ISR/FSR (>0-jet) 7.3 -2.8 -1.7 -4.3

G. Results

We use MCLimit package [38] to calculate the expected 95% CL upper limits on the

Higgs boson production cross section times branching ratio. As input to MCLimit,

we use di-tau invariant mass distributions in the signal region, Mττ , shown in Figs. 59

and 61. Limits for the channels without jets and for the channels with at least one

jet are reported in Tables XLI and XLII and shown in Fig. 63. The combined limit

is reported in Table XLIII and shown in Fig. 64.
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Fig. 63. Expected and observed upper limits on the Higgs boson production cross

section times branching ratio in the units of the standard model prediction as

a function of the Higgs mass. Left: =0-jet channels, right: >0-jet channels.

2 / GeV/cHm
115 120 125 130 135 140 145 150

2 / GeV/cHm
115 120 125 130 135 140 145 150

)τ τ 
→

* B
R

(H
 

S.
M

.
σ

(9
5 

C
.L

. l
im

it)
/

σ

1

10

210

310
,   >=0-jethτ µe/τ →    H 

Expected

σ 1 ±

σ 2 ±

Observed

-1 L dt =7.8 fb∫CDF RUN II Preliminary                                  

Standard Model 

Fig. 64. Expected and observed upper limits on the Higgs boson production cross

section times branching ratio in the units of the standard model prediction as

a function of the Higgs mass. All channels combined.
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Table XLI. Expected and observed upper limits on the Higgs boson production cross

section times branching ratio in the units of the standard model prediction.

=0-jet channels.

τe/µτh(1- and 3-prong), Njet = 0

MH

Expected 95% C.L. Limit
Observed 95% C.L. Limit

−2σ −1σ Median +1σ +2σ

115 20.7 28.1 38.8 54.7 75.0 25.4

120 19.2 25.7 35.7 50.8 70.3 24.2

130 22.4 29.2 39.7 56.0 78.0 29.6

140 43.9 58.5 80.2 113.9 156.7 68.9

150 68.3 91.9 123.9 174.3 237.1 125.2

Table XLII. Expected and observed upper limits on the Higgs boson production cross

section times branching ratio in the units of the standard model predic-

tion. >0-jet channels.

τe/µτh(1- and 3-prong), Njet > 0

MH

Expected 95% C.L. Limit
Observed 95% C.L. Limit

−2σ −1σ Median +1σ +2σ

115 10.9 14.4 19.5 27.5 36.4 19.5

120 10.8 14.0 19.4 26.7 36.8 21.3

130 12.5 16.0 22.8 31.7 45.4 31.0

140 23.6 30.3 42.8 59.6 84.8 68.8

150 39.7 50.2 70.7 100.2 136.8 133.0
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Table XLIII. Expected and observed upper limits on the Higgs boson production cross

section times branching ratio in the units of the standard model predic-

tion. All channels combined.

τe/µτh(1- and 3-prong), Njet >= 0

MH

Expected 95% C.L. Limit
Observed 95% C.L. Limit

−2σ −1σ Median +1σ +2σ

115 9.4 12.4 16.9 24.0 32.7 14.1

120 9.4 12.2 16.5 23.4 31.7 14.9

130 11.2 14.3 19.3 26.7 37.7 21.5

140 20.8 27.1 36.6 51.8 71.8 50.4

150 33.6 43.2 59.5 82.4 116.4 97.5
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CHAPTER VII

CONCLUSIONS

We performed a search for the Higgs boson at the Tevatron collider using CDF data

in the channel where the Higgs is produced via gluon fusion, associated production

and vector boson fusion and decays to a pair of tau leptons. This channel contributes

to the combined sensitivity of the global search for the Higgs in the most difficult,

low mass region. While there are many indications that the mass of the Higgs is

115<MH<150 GeV/c2, no single measurement is capable to discover or rule out the

Higgs boson in this mass range. However combined sensitivity of several measure-

ments improves with every single channel added to the combination.

A significant improvement to the sensitivity of the H → ττ channel has been

achieved in this study by introducing two novel techniques and better event cate-

gorization. At least a 30% gain in the sensitivity is achieved by using the PPFA

method for tau energy measurements and MMC algorithm for di-tau mass recon-

struction. This level of improvements in the sensitivity using conventional methods1

would only be achieved by accumulating and analyzing a ≈1.7 times larger dataset.

The observed data from CDF are found to be consistent with the background

only hypothesis. Therefore we set an upper limit on the Higgs boson production cross

section times branching ratio for Higgs decay to two tau leptons. The observed and

expected limits are evaluated in the mass range from 115 GeV/c2 to 150 GeV/c2. We

express limit in the units of the SM prediction for the cross section times branching

ratio. At MH=120 GeV/c2 the observed limit is 14.9×σSM ×Br(H → ττ).

1”Cut-based” analysis using visible ττ mass is assumed. Multivariative techniques
were proven to be an alternative option to achieve similar improvements in H → ττ
channel relying on kinematics [39].
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